Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Шрифт:
Весьма убедительно выглядела демонстрация постепенного накопления двухдневной активности в процессе бета-распада урана-239. Еще одним доказательством открытия нового элемента стал «кадмиевый» опыт: в поток нейтронов помещали уран, обернутый в кадмиевую фольгу. Излучатели с периодами полураспада 23 минуты и 2,3 суток получались, как и при облучении открытого урана. Зато количество ядер-осколков сильно уменьшилось. Объясняется это просто: кадмий поглощает медленные нейтроны, которые делят ядра
«Кадмиевый» опыт однозначно подтвердил: излучатель с периодом распада 2,3 суток не может быть продуктом деления. Это ядра нового элемента, элемента № 93, который Макмиллан предложил назвать нептунием. В солнечной системе за планетой Уран следует Нептун. Так и в ряду химических элементов за ураном (по-латыни uranium) следует нептуний (neptunium).
Между прочим, почти одновременно с Макмилланом и независимо от него двухдневную активность обнаружил один из соратников Ферми — Эмилио Сегре. Однако он приписал новую активность одному из изотопов лантаноидной фракции, поскольку в его опытах редкоземельный элемент-носитель, добавленный к раствору, увлекал за собой новый излучатель… Положительно не везло с трансуранами Энрико Ферми и его соратникам.
Микро и макро
Как и другие радиохимики, Макмиллан и Эйбельсон применяли в своих исследованиях метод изотопных носителей. С его помощью они разработали окислительно-восстановительный лантанофторидный цикл, служивший долгое время для очистки нептуния. Однако химикам этого было мало. Они стремились изучить новый элемент в растворах обычной концентрации, когда носители уже не нужны. «Метод изотопных носителей — единственный, когда приходится работать с микрограммами вещества. Вместе с тем к полученным данным следует относиться с осторожностью, и во многих случаях нельзя сделать вполне определенных выводов». Это мнение Гленна Сиборга, крупнейшего специалиста в области трансуранов. Но как получить раствор высокой концентрации, если в распоряжении экспериментатора считанные микрограммы нептуния?
Легендарный Левша ковал блошиные подковы; вполне реальные искусные стеклодувы сделали пробирки и мензурки объемом в стотысячную миллилитра! Растворенный в такой пробирке микрограмм нептуния давал уже солидную концентрацию 0,1 г/л.
Всю основную «аппаратуру» устанавливали на предметном столике микроскопа; пробирки, пипетки брали миниатюрными манипуляторами, осадок от жидкой фазы отделяли на микроцентрифуге. Это, так сказать, техника. А химия здесь достаточно обычная. На первой стадии нептуний соосаждали с редкоземельными фторидами, затем фториды растворяли в серной кислоте и переводили нептуний в шестивалентное состояние. После добавления фтористоводородной кислоты носитель и плутоний выпадали в осадок, а нептуний оставался в растворе. На следующем этапе нептуний (VI) восстанавливался до нептуния (IV), получившуюся гидроокись осаждали и прокаливали. Так в крошечных сосудах впервые было получено свободное от носителя соединение нептуния — NpO2.
Сегодня нет необходимости работать с микрограммовыми количествами элемента № 93. Химики располагают вполне весомыми порциями изотопа 237Np. В отличие от всех остальных известных изотопов элемента № 93, 237Np — долгожитель, его период полураспада 2,2 млн. лет. Нептуний-237 — изотоп с малой удельной активностью, и работать с ним легко: на ход химических реакций радиационные эффекты существенно не влияют.
Нептуний — пятый член ряда актиноидов. До недавнего времени для него были известны четыре валентных состояния: от 3+ до 6+, или от (III) до (VI), как предпочитают писать радиохимики. Лишь в 1967 г., спустя четверть века после открытия элемента № 93, в Институте физической химии АН СССР был открыт семивалентный нептуний [21] .
21
На
Разные ионы нептуния по-разному окрашивают растворы: Np3+ — в голубой или пурпурный цвет, Np4+ — в желто-зеленый, NpO2+ — в голубовато-зеленый, NpO22- — в розовый или красный. В щелочной среде нептуний (VII) — зеленый, а в хлорной кислоте — коричневый.
Хотя нептуний — элемент искусственный, получены и достаточно хорошо изучены многие его соединения — и обычные, и комплексные. Интересно, что галогениды трехвалентного нептуния внешне совершенно непохожи. Трифторид элемента № 93 — пурпурного цвета, трибромид — зеленого, трииодид — коричневого, а трихлорид нептуния бесцветен. Известны и твердые соединения нептуния (VII).
Естественно, химия нептуния изучена на изотопе нептуний-237.
Долгожитель и другие
Существуют три природных радиоактивных семейства — тория-232, урана-235 и урана-238. В наши дни, в эпоху искусственного синтеза изотопов и элементов, физики воссоздали четвертый радиоактивный ряд — семейство нептуния-237. Помимо «искусственности», это семейство отличают еще две особенности: во-первых, в нем нет изотопов радона и, во-вторых, конечный продукт распада в этом случае не изотоп свинца, а стабильный висмут-209. Вот какова цепочка переходов в нептуниевом семействе:
Самый долгоживущий изотоп элемента № 93 рождается в интересной ядерной реакции: быстрый нейтрон поражает ядро урана и захватывается им. Энергия быстрого нейтрона велика, и нуклонное образование уран+нейтрон оказывается возбужденным. В некоторых случаях оно разваливается на два осколка, а иногда из него вылетают один за другим два нейтрона и уносят избыток энергии. Баланс подвести несложно — в ядре остается 237 частиц. Продукт ядерной реакции — уран-237 — неустойчив: испустив бета-частицу, он переходит в нептуний. Благодаря этому процессу уже накапливают килограммы нептуния.
Это отнюдь не бесполезные килограммы. Нептуний- 237 — прекрасный стартовый материал для накопления плутония-238 — ценного топлива ядерных космических батарей и других деликатных устройств вроде стимулятора сердечной деятельности или искусственного сердца.
Остальные известные изотопы элемента № 93 не играют сами по себе заметной роли в ядерной технике. Их исследуют физики.
Как-то в середине 60-х годов на мощном дубненском циклотроне У-300 облучили висмутовую мишень ускоренными ядрами неона. В ядерной реакции висмут+неон образовывались ядра изотопа нептуния. Они испытывали К-захват: ядро нептуния «впитывало» в себя один из электронов атомной оболочки и превращалось в уран. В некоторых случаях дочернее ядро урана оказывалось на высоком возбужденном уровне (проще говоря, у ядра оказывался большой избыток энергии),и оно распадалось на осколки. Так был открыт новый вид ядерных превращений — деление ядер после К-захвата.
Хорошо изучены ядерные характеристики тринадцати изотопов нептуния — от 229-го до 241-го. Изотопы с большим массовым числом, вплоть до нептуния-257, образуются при взрыве водородной бомбы. Об этом свидетельствует появление в продуктах термоядерного взрыва атомов фермия. Изучить свойства тяжелых нептуниевых ядер пока невозможно: они слишком неустойчивы и переходят в высшие элементы задолго до извлечения радиоактивных продуктов подземного взрыва.
Одна триллионная