Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Шрифт:
Выходит, что не только рекордными сечениями захвата знаменит гадолиний!
А еще у него максимальное по сравнению со всеми другими лантаноидами удельное электрическое сопротивление — примерно вдвое больше, чем у его аналогов. И удельная теплоемкость гадолиния на 20% (при 25°C) превышает удельную теплоемкость лантана и церия. Наконец, магнитные свойства ставят элемент № 64 в один ряд с железом, кобальтом и никелем. В обычных условиях, когда лантан и другие лантаноиды парамагнитны, гадолиний — ферромагнетик, причем даже более сильный, чем никель и кобальт. Но железо и кобальт сохраняют ферромагнитность и при температуре порядка 1000 К, никель — 631 К. Гадолиний же теряет это свойство, будучи нагрет всего до 290 К (17°C).
Необычны магнитные свойства и у некоторых
В области сверхнизких температур открыто еще одно применение элемента № 64. Сплав гадолиния с церием и рутением в этих условиях приобретает сверхпроводимость и в то же время обнаруживает слабый ферромагнетизм. Таким образом, для магнетохимии представляют непреходящий интерес и сам гадолиний, и его соединения, и сплавы. Другой сплав гадолиния — с титаном применяют в качестве активатора в стартерах люминесцентных ламп. Этот сплав впервые получен в нашей стране.
Несколько слов о других практически важных соединениях элемента № 64. Окись гадолиния Gd2O3 используют как один из компонентов железо-иттриевых ферритов. Люминофоры с оксисульфидом гадолиния позволяют получать наиболее контрастные рентгеновские снимки. Молибдат гадолиния — компонент галлий-гадолиниевых гранатов. Эти материалы представляют большой интерес для оптоэлектроники. А селенид гадолиния Gd2S3 обладает полупроводниковыми свойствами.
Вероятно, заканчивая, следует указать общее число известных сейчас изотопов гадолиния. Все-таки сегодняшнему читателю он интересен прежде всего как «атомный» элемент.
Известно 20 изотопов элемента № 64 с массовыми числами от 143 до 162. Стабильных из них шесть — с массовыми числами 154, 155, 156, 157, 158 и 160, а природных — семь, та же шестерка плюс слабо излучающий альфа- частицы гадолиний-152. Доля его в природной смеси изотопов невелика — 0,2%, а период полураспада, напротив, весьма протяжен — 1014 лет.
Из радиоактивных изотопов гадолиния интерес для науки представляют прежде всего гадолиний-153 с периодом полураспада 236 суток, причем распадается он путем электронного захвата, и гадолиний-159, который, напротив, испускает электроны с периодом полураспада всего 18 часов. Этот изотоп образуется в атомных реакторах; иногда атомы гадолиния-159 используют в качестве своеобразной радиоактивной метки. В целом же значение стабильных изотопов гадолиния для атомной энергетики намного больше, чем радиоактивных.
Тербий
Элемент № 65. В природе существует в виде одного-единственного стабильного изотопа тербий-159. Элемент редкий, дорогой и используемый пока главным образом для изучения его же собственных свойств. Весьма ограниченно соединения тербия используют в люминофорах, лазерных материалах и ферритах. Искусственных изотопов тербия получено довольно много: их массовые числа от 146 до 164, исключая стабильный тербий-159. Все эти шестнадцать изотопов не отличаются долгожительством: самый длинный период полураспада у тербия-157 — больше 100 лет. Тербий-160, получаемый из стабильных тербия-159 и гадолиния-160 в результате ядерных реакций, нашел практическое применение в качестве радиоизотопного индикатора. Период полураспада этого изотопа 72,3 дня.
Своеобразны магнитные свойства тербия: при
Темно-коричневый порошок окиси тербия имеет состав Tb4O7 или Tb2O3•2ТbO2. Это значит, что при окислении часть атомов тербия отдает по три электрона, а другая часть — по четыре. Как и окисел празеодима Pr6O11, это вещество следует рассматривать как промежуточное соединение между двумя «чистыми» окислами тербия: Tb2O3 и TbO2. Эти вещества химикам также удалось получить — сначала Tb2O3, а затем, окисляя его атомарным кислородом, и TbO2. Изучены они, разумеется, значительно хуже, чем промежуточный окисел, образующийся «естественным путем» (чтобы реакция окисления шла быстро, тербий достаточно нагреть до 180°C).
Из других соединений тербия интерес для химика представляют его хлориды и фториды. Фторид четырехвалентного тербия TbF4, образующийся из TbF3 под действием элементного фтора, абсолютно бесцветен. Треххлористый тербий TbCl3 — самое легкоплавкое соединение из всех галогенидов редкоземельных элементов — плавится при температуре ниже 600°C.
История тербия — достаточно путаная. В течение полувека существование этого элемента не раз брали под сомнение, несмотря на то, что первооткрывателем тербия был такой авторитет в химии редких земель, как Карл Мозандер. Это он разделил в 1843 г. иттриевую землю на три — иттриевую, тербиевую и эрбиевую. Но такие известные ученые XIX в., как Бунзен и Клеве, нашли в иттриевой земле лишь два окисла и считали сомнительным существование третьей — тербиевой земли. Позже Лекок де Буабодран обнаружил тербий (вместе с гадолинием и самарием) в псевдоэлементе мозандрии. Однако затем маститый ученый сам запутался, придя к выводу, что существует не один тербий, а несколько элементов — целая группа тербинов… Словом, путаницы было хоть отбавляй. И лишь в начале XX в. известный французский химик Жорж Урбен получил, наконец, чистые препараты тербия и положил конец спорам. Соли тербия оказались- таки розовыми, как и утверждал Мозандер.
Диспрозий
Диспрозий — один из самых распространенных элементов иттриевой подгруппы. В земной коре его в 4,5 раза больше, чем вольфрама. Выглядит он так же, как и остальные члены редкоземельного семейства, проявляет валентность 3+, окраска окиси и солей — светло-желтая, обычно с зеленоватым, реже с оранжеватым оттенком.
Название этого элемента происходит от греческого , что означает «труднодоступный». Название элемента № 66 отразило трудности, с которыми пришлось столкнуться его первооткрывателю. Окисел этого элемента — землю диспрозию — открыл Лекок де Буабодран
спектроскопически, а затем выделил ее из окиси иттрия. Произошло это в 1886 г., а через 20 лет Урбен получил диспрозий в относительно чистом виде.
Однако более или менее точно определить основные физико-химические константы этого элемента удалось лишь после того, как А.Н. Даапе и Ф. Спендинг разработали двухстадийный способ получения элементного диспрозия. Сначала окись диспрозия превращают во фторид, на который затем воздействуют металлическим кальцием при быстром нагревании до 1500°C. Таким способом получают серебристо-белый пластичный металл с плотностью 8,5 г/см3, который плавится при 1407°C. Сейчас в нашей стране получают кальциетермический диспрозий чистотой 99,76%.