Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Шрифт:
Расщепление уранового ядра и открытие цепной реакции деления не подвели итог каскаду великолепных, ни с чем не сравнимых открытий. «Заключительным аккордом» стало открытие спонтанного деления ядер урана (К.А. Петржак и Г.Н. Флеров, 1939–1940 гг., Ленинград).
Великие открытия 30-х годов легли в основу современной ядерной физики и атомной энергетики. Они позволили глубже понять строение атома. В нейтронных потоках урановых реакторов в наши дни тоннами накапливаются элементы, в десятки раз более ценные, чем золото. В каком-то смысле уран сыграл роль философского камня, о котором грезили поколения алхимиков.
Вместе с тем поток больших открытий, связанных
Цепная реакция открытий «вышла па плато». В сплошном гуле частностей даже самое чуткое ухо не улавливает чего-либо из ряда вон выходящего.
Сегодня естественно взглянуть на уран глазами инженера и, если хотите, потребителя. Но это — тема особого разговора.
II. ЭНЕРГЕТИЧЕСКОЕ СЫРЬЕ
После цепи замечательных открытий наступила пора решения сложнейших технических и технологических проблем. Нужно было в невиданных доселе масштабах добывать урановую руду, наладить металлургию нового важнейшего металла, из металла приготовить сплавы, стойкие к радиационным воздействиям и достаточно прочные, чтобы можно было готовить из них реакторные тепловыделяющие элементы (твэлы). А еще нужно было научиться разделять изотопы элемента № 92, научиться работать с источниками радиоактивности, превосходящими во много раз естественную радиоактивность всего вещества нашей планеты, очищать облученный уран от осколков деления и вновь пускать его в дело…
Ниже и пойдет речь о решении этих инженерных проблем. Но прежде — о земных запасах элемента № 92, его минералах и рудах.
Земной уран
До пуска первых ядерных реакторов урановые руды добывали в основном для извлечения из них радия. Мизерные количества урановых соединений использовали в некоторых красителях и катализаторах. Когда из элемента, не имеющего почти никакого промышленного значения, уран превратился в стратегическое сырье № 1, началась настоящая охота за его рудами. Чуть ли не все уголки земного шара были обследованы на уран, благо свойства его соединений — радиоактивность и способность светиться в ультрафиолетовых лучах — сами подсказали принципы конструирования новых чувствительных поисковых приборов, обладающих к тому же достаточно высокой избирательностью.
Впрочем, еще до того, как открыли деление ядер урана нейтронами, было определено его содержание во многих горных породах, чтобы выяснить их абсолютный возраст. Оказалось, что средняя концентрация урана в земной коре довольно велика — 3•10– 4%. Это значат, что урана на Земле больше, чем серебра, висмута, ртути…
В некоторых распространенных породах и минералах содержание урана значительно выше этой средней величины. Так, в тонне гранита — около 25 г элемента № 92. Полная энергия этих 25 г эквивалентна теплосодержанию 125 т каменного угля. Поэтому (а еще потому, что во всем мире наблюдается устойчивая тенденция к использованию все более бедных
Всего в относительно тонком, двадцатикилометровом, верхнем слое Земли заключено около 1014 т урана. Количество громадное, способное удовлетворить все энергетические потребности человечества на многие тысячелетия. Энергия этого урана оценивается астрономической цифрой — 2,36•1024 киловатт-часов. Это в миллионы раз больше, чем могут дать все разведанные и предполагаемые месторождения горючих ископаемых.
Подсчитано, что быстрое освобождение энергии урана, заключенного в земной коре, раскалило бы нашу планету до температуры в несколько тысяч градусов. К счастью, урановое тепло в толще Земли выделяется постепенно, по мере того как ядра урана и его дочерних продуктов проходят по длинной цепи радиоактивных превращений. О том, что этот процесс очень медленный, свидетельствуют периоды полураспада природных изотопов урана. Для урана-235 он равен 7•108 лет, для урана-238 — 4,47•109.
Как ни медленно выделяется урановое тепло, оно все-таки существенно подогревает Землю. Однако если бы в массе планеты концентрация урана была такой же, как в двадцатикилометровом верхнем слое, то температура Земли была бы намного выше существующей. Эти расчеты, подтвержденные прямыми измерениями (на больших глубинах вулканические породы беднее ураном), показывают, что по мере продвижения к центру Земли концентрация урана падает.
Минералы и руды
Несколько слов о минералах урана. Их известно много — около 200. Они разные по составу, происхождению и, конечно, далеко не все имеют промышленное значение. Минералы урана делят на первичные, образовавшиеся при формировании земной коры, и вторичные — те, что образовались на более поздних стадиях ее развития под действием тех или иных природных факторов.
Есть минералы урана окислы, есть силикаты, титанаты, тантало-ниобаты и т. д. Из первичных минералов-окислов наиболее известен настуран, он же урановая смолка или смоляная обманка. Обычно этому минералу приписывают формулу U3O8, но в действительности состав настурана переменен, и более точной представляется формула UO2,25. Обманкой этот минерал называют за переменчивость цвета: темно-серый, черный, зеленовато-черный… А смолкой — за то, что его зерна действительно похожи на капли застывшей смолы.
Из вторичных минералов распространен желто-зеленый отентит — гидратированный уранилфосфат кальция Ca(UO2)2(PO4)2•8Н2O.
Не всякую породу, содержащую уран, считают рудой. Основной принцип классификации «руда — не руда» — процентное содержание урана в породе. Сегодня проходной балл 0,1%, но иногда и в наши дни бывает выгодно извлекать уран из более бедных руд. Критерий здесь — экономическая целесообразность. В Южной Африке, например, извлекают уран из руд, содержащих всего 0,01%U. Но наряду с ураном эти руды содержат золото.