Популярно о микробиологии
Шрифт:
Именно ей мы отводим ведущую роль, когда говорим о биотехнологии. При этом все выглядит довольно просто: выделяется ген, ответственный за биосинтез целевого, довольно дорогостоящего, продукта, после некоторых манипуляций этот ген вводят в ДНК микроорганизма-хозяина, и клетки последнего становятся продуцентом целевого продукта.
Однако нам бы не хотелось, чтобы у читателя сложилось мнение, что после введения соответствующего гена все проблемы решаются сами собой. Отнюдь. Между введением гена в ДНК микроорганизма и реальным получением ценного целевого продукта, который этот ген кодирует, лежит трудный путь, связанный с необходимостью проведения большого объема работ. Во-первых, нужно заставить организм-хозяин, в который введен новый ген, принять его. И тут возникают проблемы отторжения, аналогичные тем, которые появляются при пересадке органов. Этот ген должен в процессе размножения
Перечень требований можно было бы продолжить, но тогда наша книга превратится в пособие по биотехнологии. Добавим только, что желательно, чтобы целевой продукт был не очень сильно связан со структурными компонентами клетки и мог бы легко отделяться от них, например за счет секреции в культуральную жидкость.
Требования, которые предъявляются технологией к культурам-продуцентам, напоминают претензии разборчивой невесты из «Женитьбы» Н. В. Гоголя. «Если бы губы Никанора Ивановича да приставить к носу Ивана Кузьмича, да взять сколько-нибудь развязности, какая у Балтазара Балтазарыча, да, пожалуй, прибавить к этому еще дородности Ивана Павловича…»
Именно эту задачу придания различных полезных свойств микроорганизмам и призвана решать генетическая инженерия. Она находится в начале своего развития, ей всего лишь чуть больше 35 лет. Наиболее впечатляющие ее успехи послужили основой создания новых видов не только микроорганизмов, но и растений и животных. Более того, можно не без основания предполагать, что генетическая инженерия сможет помочь (и уже помогает!) в том числе в борьбе с наследственными болезнями человека.
Глава 21
Микробы и ферменты
Около 100 лет тому назад в 1907 г. Эдвард Бюхнер (не путать с Эрнестом Бюхнером, изобретателем воронки Бюхнера) получил Нобелевскую премию за открытие ферментации бесклеточными экстрактами из дрожжей. Растерев дрожжевые клетки с кварцевым песком и отфильтровав полученную жидкость, Бюхнер получил «вытяжку», способную проводить ферментацию сахара так же, как и живые клетки.
С ферментацией (от латинского fermentare — вызывать брожение) человек ознакомился еще в доисторические времена, когда началось производство и потребление спиртных напитков. Но только лишь в XVIII в. было изучено, как происходит этот процесс, т. е. как сахар превращается в спирт и углекислый газ. Наблюдения А. Левенгука и классические опыты Л. Пастера показали, что ферментация возможна только в присутствии живых клеток.
Полученные Бюхнером результаты противоречили этим утверждениям. Объединить две противоположные точки зрения могло только предположение, что и в клеточном экстракте, и в самих дрожжах присутствует одно и то же действующее начало. Из этого следовало, что никаких различий между химией живого и неживого не существует и что действующее начало может работать и вне живой клетки, если его удается выделить из нее в нативном (неповрежденном) виде.
Этому действующему началу подобрали название — энзим (фермент), и с этого времени энзимология стала бурно развиваться. Оказалось, что в живой клетке присутствует множество ферментов (на сегодня их известно около 3700!) и они служат катализаторами всех протекающих в ней биохимических реакций. Ферменты намного эффективнее обычных химических катализаторов — по сравнению с ними они ускоряют реакции в сотни и тысячи раз. Ферменты участвуют в разложении веществ, биосинтезе, получении энергии, при фото- и хемосинтезе, передаче наследственной информации и даже для исправления в ней ошибок.
Одной из главнейших функций живого является сохранение вида. Для ее выполнения требуется проведение множества биохимических реакций. Сравнивая микроорганизм с микроскопическим заводом, можно сказать, что ферменты — обширный и разнообразный станочный парк этого завода. Они являются теми высокоточными инструментами, с помощью которых клетка штампует различные комплектующие, используемые для последующего монтажа изделия главного сборочного конвейера — новой клетки. Если же нас интересует один из продуктов метаболизма, то нужно выделить соответствующий фермент и использовать его для получения целевого продукта вне связи с общей задачей выживания.
Хотя ферменты и содержатся во всех живых клетках, в промышленных масштабах их получают в основном из клеток микроорганизмов. Это самый удобный источник получения ферментов, так как их концентрация может быть значительно увеличена за счет изменения условий культивирования или генетических манипуляций.
После получения и выделения ферментов необходимо, не нарушая тонкой структуры, сохранить их в работающем состоянии и создать условия, в которых их активность сохранялась бы достаточно долго. Подобно мифическому Антею, оторванному Гераклом от матери-Земли, ферменты, отделенные от клетки, быстро теряют активность. Эта проблема стабильности успешно решается с помощью техники иммобилизации. Ферменты прикрепляются химическими связями к носителю или включаются в объем органических полимерных гелей. Таким образом получают высокоэффективные, высокоспецифичные биокатализаторы пролонгированного действия, позволяющие поднять производительность многих производств.
Выделенные ферменты используются в виноделии и пивоварении, хлебопечении и сыроварении, при производстве спирта и уксуса. Ферменты находят все большее применение в медицине не только как катализаторы, но и как высокочувствительные и скоростные анализаторы. Производство ферментов достигло поистине промышленных масштабов: речь идет о сотнях и тысячах тонн готовой продукции.
Несмотря на огромные успехи, связанные с обнаружением новых ферментов с повышенной активностью и стабильностью, выделением их из клеток и стабилизацией их активности, мы по сути всего лишь повторяем на новом технологическом уровне работы, начало которым положил Эдвард Бюхнер. Но, конечно, успехи в сфере энзимологии огромны. Увеличился объем знаний о структуре ферментов, созданы новые представления об их активном центре и о механизмах протекания реакций. Все это (и многое другое!) вместе с огромными возможностями генетической инженерии позволит не только улучшать известные в природе ферменты, но и создавать новые, которых не существовало в природе. По-видимому, в ближайшие годы технологии получения ферментов с повышенной активностью и стабильностью будут быстро развиваться. И главную роль в этом по-прежнему будут играть микроорганизмы.
Глава 22
Дом, в котором мы живем
Всегда можно найти организмы, способные вызвать разложение любого образующегося в естественных условиях органического вещества, насколько стойким оно ни казалось бы на первый взгляд.
Еще несколько десятилетий назад сам термин «экология» был известен только специалистам. В наши дни статьи на тему защиты окружающей среды не сходят со страниц периодической печати. Почему это произошло?
Новый этап в развитии биосферы начался с появлением человека. Правда, вначале влияние его деятельности на нее мало отличались от воздействия на биосферу других живых существ. Человек получал необходимую для жизни пищу, используя продукты растительного или животного происхождения. При этом неизбежно образовывались отходы, но химические элементы, входящие в их состав, с помощью микроорганизмов возвращались в круговорот веществ. Так продолжалось достаточно долго, и не возникло бы никаких экологических проблем, если бы не рост производительных сил развивающегося общества. Человека перестали удовлетворять набедренная повязка и кусок мяса. Он захотел большего. Тейяр де Шарден в книге «Феномен человека» [6] пишет: «Теперь кроме хлеба, который символизировал в своей простоте пищу неолита, каждый человек ежедневно требует свою порцию электричества, нефти и радия, свою порцию открытий, кино и международных известий. Теперь уже не простое поле, как бы оно ни было велико, а вся Земля требуется, чтобы снабжать каждого из нас».
6
Шарден П. Феномен человека. — М.: ACT, Астрель, Полиграфиздат, 2012.