Чтение онлайн

на главную

Жанры

Посвящение в радиоэлектронику
Шрифт:

Если к качающемуся маятнику приделать кисточку или перышко, а под маятником равномерно протягивать бумажную ленту, то кривая, которую вычертит перышко, будет синусоидальной. Следовательно, колебания маятника происходят по синусоидальному закону.

Запись колебаний маятника на бумажной ленте.

Теперь представим, что мы смотрим в очень сильный телескоп на далекую планету, обращающуюся по круговой орбите вокруг своей звезды «солнца». Если смотреть с направления, перпендикулярного плоскости орбиты (по стрелке А), то мы увидим, что планета движется по окружности. А если смотреть в плоскости орбиты, по стрелке В? Мы увидим,

как планета пересекает диск «солнца», отходит на максимальное расстояние в одну сторону, затем возвращается, опять пересекает диск «солнца» и удаляется на такое же расстояние в другую сторону. Нам покажется, что планета совершает колебания около точки равновесия, совпадающей с центром ее «солнца». Эта колебания синусоидальны. Зачем ходить за примерами в космос возьмите шарик на ниточке и заставьте его совершать круговые движения. Если посмотреть на шарик сбоку, по направлению оси х, мы увидим синусоидальные колебания шарика.

Проекция кругового движения.

Если же посмотреть с другой стороны, в направлении оси у, мы опять увидим синусоидальные колебания, но происходящие со сдвигом на четверть оборота по отношению к первым. У нас получился маятник, качающийся одновременно в двух перпендикулярных направлениях (по осям х и у). Колебания одинаковы, но запаздывают друг относительно друга на четверть периода (оборота). Такое запаздывание соответствует сдвигу колебаний по фазе на /2 [если полный период (оборот) соответствует углу 2, то четверть оборота — /2]. Получается, что движение по окружности — пример сложного колебательного движения, состоящего из двух простых, синусоидальных. Теперь ясно, что синусоида — это развернутая во времени проекция равномерно вращающейся точки на какое-либо фиксированное направление.

Поясним примером и графиком. Пусть вектор А вращается вокруг начала координат, угол поворота обозначим Ф. Тогда проекция вектора А на вертикальную ось будет у = A·sin Ф. Если еще учесть, что при равномерном вращении угол Ф нарастает прямо пропорционально времени: Ф = ·t, где — угловая скорость вращения, то получится широко известная формула

у = A·sin t,

описывающая простое, синусоидальное колебательное движение. Точно такой же формулой описывается и переменное электрическое напряжение, имеющееся, например, в электрической розетке.

Синусоида — проекция равномерно вращающейся точки.

Мне кажется, теперь вы легко сможете ответить на вопрос, почему переменное напряжение в электросети синусоидально. Ведь якорь генератора на электростанции вращается равномерно. А магнитное поле, нужное для генерирования тока, направлено перпендикулярно оси якоря. Оно задает ту самую ось, на которую проектируется вращение якоря. Впрочем, гораздо лучше устройство генератора описано в школьном учебнике физики. Итак, в нашей электрической розетке имеется напряжение

u = A·sin t.

Названия параметров, входящих в формулу, стали несколько другими: А — амплитуда напряжения, — угловая частота, t — это по-прежнему текущее время. Если известно, что сетевое напряжение 220 В, это не значит, что А = 220 В. В электротехнике, если нет специальной оговорки, пользуются действующими значениями напряжения или тока. Действующие значения соответствуют значениям постоянного тока, развивающего ту же мощность. Амплитудное значение напряжения или тока в 2 раз больше действующего. Поэтому при действующем напряжении в сети 220 В мгновенное напряжение изменяется от нуля до 311 В по закону синуса и А = 311 В.

Давайте обсудим, почему синусоидальная форма напряжения или тока является простейшей, в некотором смысле наилучшей формой. Как мы уже установили такую форму тока дает равномерно вращающийся якорь генератора. Но если какими-либо техническими ухищрениями сделать форму тока другой, например прямоугольной? Даст ли это какие-нибудь преимущества при передаче электроэнергии? Оказывается, нет!

Спектры

Синусоидальные колебания.

Прямоугольную волну тока можно представить как сумму простейших синусоидальных волн. На рисунке показано, как это делается. Сверху изображено синусоидальное колебание с частотой f0. Напомним, что угловая частота связана с обычной, циклической частотой простым соотношением = 2·f. Частота тока электрических сетей в СССР выбрана равной 50 Гц, в США 60 Гц. Это соответствует частоте вращения якоря генератора 3000 и 3600 об/мин соответственно. Если к изображенному на рисунке основному колебанию с частотой f0 добавить еще одно колебание с частотой 3f0 (третью гармонику основного колебания), то форма суммарного колебания изменится. Добавим еще и пятую гармонику-колебание с частотой 5f0. Относительные амплитуды гармоник должны уменьшаться обратно пропорционально частоте. Результат суммирования трех колебаний с частотами f0, 3f0 и 5f0 и с амплитудами 1, 1/3 и 1/5 изображен на нижнем графике. Здесь мы видим поразительное приближение к прямоугольному колебанию.

Прямоугольное колебание можно представить суммой синусоидальных гармоник с амплитудами Аn = A1/n (где n = 1, 3, 5…)

Великий французский математик Ж. Фурье доказал, что любое периодическое колебание можно представить суммой простейших, синусоидальных колебаний с кратными частотами. Их набор называется спектром исходного колебания. Спектр можно изобразить графически, отложив по горизонтали частоты, а по вертикали относительные амплитуды гармоник. Точное приближение к исходной форме колебания дает чаще всего лишь бесконечный ряд гармоник. Например, для точного воссоздания симметричного прямоугольного колебания нужен бесконечный ряд нечетных гармоник основной частоты. Разумеется, передать такой сложный спектр по проводам электрической сети намного труднее, чем одну-единственную спектральную гармонику синусоидального колебания. Высшие гармоники неизбежно будут ослабляться по амплитуде, да и фаза их изменится, что приведет к искажению передаваемого прямоугольного колебания. Только синусоидальное колебание меньше всего подвержено искажениям при передаче.

Чем реже происходят колебания, тем больше их период (т. е. время совершения одного полного колебания) и тем ниже основная частота спектра этих колебаний. Спектральные линии на оси частот при этом располагаются гуще. Непериодический процесс тоже можно представить спектром, но спектр окажется уже не состоящим из отдельных спектральных линий, а сплошным. Соответствующая математическая операция называется интегральным преобразованием Фурье. Оно используется главным образом для импульсных сигналов. Характерна следующая закономерность: чем короче импульс, тем шире его спектр. Наивысшая частота спектра приблизительно обратно пропорциональна длительности импульса. Например, импульс длительностью 0,01 с имеет ширину спектра около 100 Гц, а импульс длительностью 1 мкс (10– 6) — 1 МГц. Особый интерес представляют бесконечно короткие или, как их еще называют, дельта-импульсы (-импульсы). Оли обладают бесконечно протяженным равномерным спектром (см. рисунок).

Звук падения одной капли дождя — это слабый и очень короткий щелчок. Он содержит колебания всех возможных звуковых частот — от самых низких до самых высоких. Шум дождя вы, разумеется, слышали и прекрасно себе представляете. Он складывается из отдельных звуков падения множества капель. Спектр шума дождя равномерен — его интенсивность одинакова на всех звуковых частотах. В электронике есть отличный аналог шума дождя — дробовой шум радиоламп и полупроводниковых приборов. Пролет каждого элементарного носителя электрического заряда, электрона или иона, создает в цени короткий импульс тока. А сумма множества таких импульсов образует электрический дробовой шум, очень похожий на шум дождя, если его воспроизвести через громкоговоритель. Собственно, само название «дробовой шум» произошло от звука дроби, ссыпаемой в какой-либо сосуд.

Поделиться:
Популярные книги

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Не возвращайся

Гауф Юлия
4. Изменщики
Любовные романы:
5.75
рейтинг книги
Не возвращайся

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Бальмануг. Студентка

Лашина Полина
2. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. Студентка