Посвящение в радиоэлектронику
Шрифт:
Для преобразования аналоговых величии в цифровой код служат специальные электронные устройства — аналого-цифровые преобразователи (АЦП). Полученный цифровой код углового положения фюзеляжа поступает в цифровой процессор, выполняющий функции и сравнивающего устройства, и системы регулирования (посмотрите схему на стр. 19). Сюда же поступают сведения и о положении самолета в других плоскостях пространства, и о положении рулей. Процессор вырабатывает сигнал, управляющий рулями. При цифровой обработке информации можно получить значительно большую точность регулирования и управления. Этим и объясняется широкое применение цифровой техники в системах управления.
С какой точностью, например, можно измерить напряжение с помощью обычного стрелочного
Несколько лет назад мне довелось пройти на гидрографическом судне от Владивостока до Петропавловска-Камчатского. Естественно, что из каждого порта я звонил домой, в Москву, чтобы справиться о делах и здоровье близких. Владивосток был еще связан с Москвой старой системой аналоговой телефонной связи. Часа три приходилось ждать, пока телефонистки соединят линию. Наконец, еле-еле, сквозь шумы и трески послышался голос жены. Совсем иная картина была в Петропавловске. Там действовала цифровая телефонная связь. Прямо из кабины телефона-автомата можно набрать код Москвы, затем две-три служебные цифры и нужный номер в Москве. Весь процесс занял не более минуты, причем более половины этого времени ушло на то, чтобы разобраться в правилах пользования автоматом, вывешенных в кабине: какие набирать цифры, каких ждать гудков и т. д. Слышно было лучше, чем когда я звонил соседу по дому в Москве, так же хорошо слышали и меня, а помех практически не было. Надо ли говорить, что после состоявшегося разговора я стал ярым приверженцем цифровой телефонной связи.
Так как же обычная человеческая речь превращается в поток цифр, ведь на выводах микрофона имеется быстро изменяющийся речевой сигнал (как показано на рисунке)? А вот как. Берутся отсчеты, т. е. значения этого сигнала через равные промежутки времени . Интервал должен быть настолько мал, чтобы речевой сигнал не успевал намного измениться между отсчетами. Этот интервал часто называют временным шагом дискретизации или интервалом Найквиста. Минимальную частоту взятия отсчетов, т. е. величину, обратную временному шагу дискретизации, определяет теорема В. А. Котельникова (академика, основателя теории помехоустойчивости систем связи). Частота отсчетов должна быть вдвое больше самой высокой частоты звукового спектра. В телефонии принято передавать частоты только до 3400 колебаний в секунду, т. е. до 3,4 кГц. При этом разборчивость речи еще очень хорошая. Значит, частота взятия отсчетов должна быть не менее 6800 в секунду, или 6,8 кГц. Процесс взятия отсчетов называют дискретизацией по времени.
Для цифровой оценки отсчетов нужен следующий процесс — дискретизация по уровню. Каждый отсчет можно представить числом, соответствующим значению отсчета звукового напряжения. Например, если звуковое напряжение измерять в милливольтах, то число целых милливольт и будет отсчетом, а один милливольт — шагом дискретизации по уровню. Ошибка квантования но уровню в данном случае не превзойдет половины шага квантования, т. е. 0,5 мВ. Отношение максимальной амплитуды звукового напряжения к шагу квантования даст максимальное число, которое можно получить при отсчетах. Оно определяет динамический диапазон передаваемого сигнала. Для передачи телефонной речи с удовлетворительным качеством достаточен динамический диапазон (отношение максимального уровня сигнала к минимальному) 30… 35 дБ, что соответствует числу шагов квантования при отсчетах 30. Для передачи одного отсчета двоичным кодом в этом случае достаточно In 230 ~= 5 разрядов. Для хорошей передачи музыки это число, число шагов квантования по уровню, должно быть не менее 10000, что соответствует динамическому диапазону 80 дЬ. В этом случае для передачи одного отсчета потребуется log210000 ~= 14 разрядов.
Преобразование аналогового сигнала в цифровой.
Наконец мы можем оценить поток информации при телефонном разговоре. Полагая полосу звуковых частот равной 3,4 кГц и частоту взятия отсчетов 6,8 кГц, получаем количество отсчетов в секунду 6800. При 30 шагах квантования по уровню каждый отсчет занимает 5 разрядов. Следовательно, в секунду передается 34000 двоичных разрядов, или бит информации. Скорость передачи информации, измеренную в битах в секунду, можно выразить формулой
С = 2F·log2N,
где F — наивысшая частота звукового спектра; N — число уровней квантования.
Перейдя на цифровую передачу, мы существенно улучшили качество связи. Но не даром же это досталось! Чтобы передать цифровой сигнал со скоростью 34 кбит/с, нужна полоса частот, пропускаемых каналом связи, не менее 34 кГц. А теперь вспомним, что для передачи обычного аналогового телефонного сигнала требуется полоса частот всего 3,4 кГц. Таким образом, цифровые системы связи оказываются широкополосными. Происходит как бы обмен полосы частот на отношение сигнал-шум, но обмен достаточно выгодный. Расширяя полосу частот в десять раз при переходе к цифровой передаче, мы намного снижаем допустимое отношение сигнал-шум, или сигнал-помеха, в канале связи, и это при общем существенном улучшении качества.
Скорость передачи 34 кбит/с достаточно большая, но надо учесть, что при телефонном разговоре с речью как таковой передаются и интонации голоса, и эмоциональная окраска, что хорошо знают все, кто разговаривал друг с другом по телефону, да и не только по телефону. Телеграф, к сожалению, таких нюансов передать не может. Давайте ради интереса оценим, каков будет поток информации, если телефонный разговор заменить телеграфной передачей того же текста. При среднем темпе речи человек произносит 1… 1,5 слова в секунду. Каждое слово состоит в среднем из пяти букв. А для передачи телеграфом одной буквы требуется 5 бит (считаем, что алфавит содержит 32 знака). Перемножив все эти числа, получим скорость передачи телеграфной информации, соответствующей тексту телефонного разговора в реальном масштабе времени, С ~= 30… 40 бит/с. Это почти в тысячу раз меньше! Вот во что обходятся связистам эмоции и интонации телефонных разговоров. Одна и та же междугородная линия связи может пропустить, скажем, 16 телефонных каналов или несколько тысяч телеграфных!
Но подождите, то ли еще будет, когда мы перейдем к телевидению! Там ведь надо передавать еще и движущиеся изображения.
Посмотрим, какой результат мы получили, положив скорость передачи в телефонном канале равной 30 кбит/с, а в телеграфном 30…40 бит/с? Ведь мы предположили, что каждый последующий отсчет сигнала независим от предыдущего и может принимать любые значения. Для телеграфного текста это означает, что вероятность появления любой буквы алфавита одинакова и не зависит от того, какие буквы были переданы ранее. Но при передаче осмысленного текста все совсем не так! Вы смотрите на ленту телеграфного аппарата и читаете: «Добрый ден…». Стоп! Какая буква следующая?
Со стопроцентной уверенностью вы скажете, что «ь», и будете совершенно правы. Так сколько бит информации нес этот последний символ «ь»? А нисколько. Но на его передачу было затрачено пять двоичных разрядов. Таким образом, мы оценили максимально возможную скорость передачи информации. Она реализуется лишь для хаотических, случайных сигналов и беспорядочного набора символов, т. е. для нестандартных текстов.
В реальном тексте можно допустить довольно много пропусков и ошибок, почти не уменьшив количество переданной информации.