Предчувствия и свершения. Книга 1. Великие ошибки
Шрифт:
Одна ласточка не делает весны. Гениальный труд Архимеда, с которым мы только что познакомились, не вывел механику из разряда низших наук.
Теперь мы знаем ответ на вопрос, почему Архимед не описал ни одну из своих замечательных чудо-машин, несомненно, желал это сделать, но не смог. Не смог создать теорию своих машин, а публикация одних описаний считалась недостойной настоящего учёного. Архимеду пришлось довольствоваться тем, что его механизмы распространились до пределов эллинистического мира, а военные машины помогли в течение трёх лет отражать от стен Сиракуз превосходящие силы римлян.
Прошло более двух тысячелетий после гибели Архимеда от меча римского завоевателя. Грабежи и пожары уничтожили всё написанное им и переписанное его современниками. Неудивительно, что в имеющихся текстах встречаются существенные разночтения.
Самый древний пергамент, воспроизводящий одно из величайших произведений Архимеда — «Эфод», найден и прочтен последним. На пергаменте греческий текст, написанный, по-видимому, в X веке, был смыт невежественным монахом, который переписал на него какой-то богословский трактат. Однако сложные современные методы позволили прочитать на этом пергаменте не только изложенные по-гречески труды Архимеда, известные до того лишь в латинских переводах XII века, но и «Эфод», особенно ценный сегодня тем, что он приоткрыл нам ещё одну из сторон личности Архимеда, которую его современники и последователи, как видно, хотели скрыть… Об этом — речь дальше.
… Перед гением Архимеда преклоняемся не только мы, далёкие потомки. Ему платили дань уважения современники. Он достиг таких высот в механике и математике, что, несмотря на низкое происхождение, на зависть коллег, его достижения — невероятные, не объяснимые уровнем знаний его времени — внушали почтение и даже страх. Он ошеломил современников своими удивительными находками в геометрии. Это Архимед нашёл, что поверхность шара в четыре раза больше площади его большого круга; поверхность шарового сегмента равна площади круга, радиус которого — прямая, соединяющая вершину сегмента с одной из точек окружности круга, служащего основанием сегмента; цилиндр, основание которого равно большому кругу шара, а высота диаметру шара, сам по объёму в полтора раза больше этого шара, а его поверхность (включая площади верхнего и нижнего оснований) в полтора раза больше поверхности шара. «Разумеется, — пишет Архимед Досифею, — эти свойства были присущи этим телам всегда, но они остались неизвестными всем геометрам; ни один из них не заметил даже, что эти тела соизмеримы между собой… Каждый, кто понимает в этом деле, может проверить правильность моих открытий».
Но кто бы ни пробовал это проверить — ничего не получалось. Решить задачу не мог никто. А свой метод решения Архимед не открывал — держал его в тайне.
Архимед поддерживал переписку со многими учёными и, по обычаю того времени, посылал им для доказательства свои новые теоремы. Тогда, как и много позже, в XVII–XVIII веках, учёные знакомили друг друга с условиями доказанных ими теорем, прежде чем опубликовать доказательство для общего сведения. Это считалось данью уважения к равному или старшему; и лишь молодым математикам было принято посылать новые теоремы вместе с доказательством. Свои теоремы Архимед отправлял Эратосфену, Конону, этим наиболее серьёзным учёным того времени, но, судя по различным источникам, ни Конон, ни Эратосфен не смогли повторить открытий Архимеда, не сумели справиться с теми задачами, которые решил он.
«Я посылал тебе мои открытия, чтобы ты сам попытался найти их доказательства, — писал он Эратосфену — Ты этого не сделал. Я, конечно, могу теперь без дальнейших рассуждений прислать мои решения, но от этого большой пользы не будет. Ты — серьёзный учёный и философ,
и хороший математик, поэтому не обижайся за правду».
Обижался ли Эратосфен? Попробуйте представить себя на его месте…
Наверное, математики жестоко завидовали Архимеду и удивлялись его всё новым и новым потрясающим, необъяснимым победам.
Его работы, безупречные с точки зрения традиционной математики того времени, ошеломляли читателя как чудо, сияние которого ослепляет, а истоки остаются тёмными.
Вот что писал Плутарх:
«Во всей геометрии нельзя найти более трудных и серьёзных задач, которые были бы притом изложены в более простой и наглядной форме, чем это сделано в сочинениях Архимеда. Одни видят в этом доказательства его таланта. По мнению других, то, что кажется каждому сделанным без усилий, было сделано упорным трудом. Самому не найти иной раз доказательств для решения задачи, но стоит обратиться к сочинениям Архимеда, и тотчас же приходишь к убеждению, что мог бы решить её сам, так ровна и коротка дорога, которой он ведёт к доказательствам».
Весьма примечательный отзыв! Видно, что он написан человеком, владеющим античной математикой. Но не математиком, пытающимся самостоятельно находить неизвестные ему решения задач.
У Плутарха даже не возникает вопроса о том, как находить сами решения. Это область профессиональных математиков, сфера гения, в которую даже наиболее образованный эллин не отваживался вступить. Плутарх явно довольствуется доказательством справедливости решения, полученного готовым.
Вопреки мнению Плутарха, для профессионального математика труды Архимеда вовсе не представлялись столь ясными. Наоборот.
Сложность задач, рассматриваемых Архимедом, казалась непреодолимой. Даже зная решение, трудно доказать его справедливость — так сложны и хитроумны необходимые построения и силлогизмы.
Архимед зачастую опускал часть выкладок, которые считал второстепенными. Опираясь на свои или чужие результаты, он обычно не даёт точных ссылок, указывая лишь: «как это было доказано в «Началах» (то есть Евклидом) или «как это было доказано ранее» (то есть им самим), полагая, что читатель досконально знает как «Начала», так и его собственные работы и обладает достаточной квалификацией, чтобы отыскать в них нужное.
В то время математики не баловали коллег ясностью изложения. Математический обычай тех времён заключался в том, что автор теоремы, открывший, скажем, истину, что 2x2 = 4, вовсе не обязан был доказывать это равенство. Он должен был доказать, что 2x2 не может быть ни больше, ни меньше четырёх. Если он сумеет убедить слушателей или читателей, что иное решение ведёт к абсурду, он выполнил свою задачу.
Приведение к абсурду — таков традиционный метод математиков в течение многих столетий.
Мы не будем здесь обсуждать все стороны этого метода. Отметим лишь одну положительную — он требовал безупречной логики и одну отрицательную — такой способ доказательства не обнаруживал хода решения задачи, а значит, не служил школой мысли, не мог помочь в решении других задач.
Архимед, боясь нарушить эту традицию и прослыть вольнодумцем, поступал как все: скрывал ход своих решений, а доказательства оформлял в стиле приведения к абсурду.