Предчувствия и свершения. Книга 2. Призраки
Шрифт:
Периоды накопления информации закономерны. Они подготавливают момент, когда количество знаний переходит в их качество.
Рождение современной кинетической теории относят к 1848 году, когда Джоуль, ничего не зная о работах Ломоносова, выступил с докладом «Некоторые замечания о теплоте и строении упругих жидкостей». Члены Манчестерского философского общества без особого интереса выслушали утверждение бывшего пивовара о том, что «упругая сила или давление должны представлять собой эффект движения частиц, из которых состоит всякий газ».
Джоуль утверждал, что таким путем можно объяснить закон Бойля — Мариотта. Хотя доклад и был напечатан в трудах общества, но эти труды вряд ли прочел
Прошло восемь лет. В 1856 году Крениг опубликовал «Очерки теории газов», в которых пишет, что каждая молекула, ударяясь о стенку сосуда, передает ей свой импульс, пропорциональный массе и скорости молекулы. Суммируя эти импульсы, он вычисляет величину давления газа и впервыe получает связь между объемом газа и его давлением, как следствие движения молекул газа. Следствие и причина были увязаны. Обнаружилась ниточка, объединяющая поведение газа с его сущностью как коллектива отдельных частиц. Современников потрясла возможность вычислить величину универсальной газовой постоянной.
Как видно, пришла пора сбора урожая в исследованиях газов. В 1857 году выходит работа Клаузиуса «О роде движения, который мы называем теплотой». Здесь Клаузиус впервые дает не только ясное и последовательное изложение молекулярно-кинетического подхода, но облекает его в математическую форму. Эмпирические законы, установленные опытным путем, и описательные теории получили в молекулярно-кинетическои трактовке прозрачное наглядное истолкование.
Представление об атомарном строении газа и о связи движения его атомов с температурой и давлением перестало быть гипотезой. Оно сравнялось по значению с фундаментальными принципами, лежащими, в соответствии с методологией Ньютона, в основах науки. В отличие от отвергаемых Ньютоном гипотез, предназначенных для объяснения единичного явления, молекулярно-кинетическая гипотеза объясняла огромный круг явлений, дотоле казавшихся независимыми. Давала возможность, подобно принципам Ньютона, вывести законы этих явлений. Она даже превосходила принципы Ньютона — позволила вычислить величину постоянной в законе Клапейрона. А постоянные в законах Ньютона и в других законах, полученных на основе его принципов, нужно было независимо определять путем дополнительных опытов.
Начиналась новая эра в науке. Открылись вдохновляющие возможности продвижения по пути, указанному Ньютоном. При этом сохранилось стремление Отыскивать законы, «причины которых (как писал Ньютон) неизвестны», не дожидаясь выяснения этих причин.
Неизвестным оставался «пустяк» — природа сил, действующих между молекулами. Но никто не думал возвращаться к гипотезам Босковича или Лесажа. Не нужно было придумывать новых гипотез о внутреннем строении молекул. Достаточно представить себе, что молекулы при соударении ведут себя как маленькие бильярдные шары и применять к вычислениям законы соударения упругих шаров. Дальше все шло само собой при помощи геометрических построений и вычислений. Запомним эту аналогию: молекулы подобны упругим шарикам. Эта аналогия повинна во многих открытиях и во многих заблуждениях. Она и успокоила ученых и вселила в них то беспокойство, ту неудовлетворенность, которая привела их в конце концов на порог квантовой эры…
…Публикация статьи Клаузиуса вызвала такой резонанс, что Джоуль поспешил еще раз опубликовать свой Манчестерский доклад 1848 года — теперь в одном из наиболее авторитетных журналов «Философикал мэгэзин». Джоуль хотел, чтобы все знали о том, что первый вклад в новую и весьма перспективную теорию сделал именно он.
Конечно, не все в статье Клаузиуса было совершенно. Для упрощения расчетов он принимал, что все молекулы движутся с одинаковой скоростью. Ему возразил Максвелл. В докладе Британской ассоциации Максвелл в 1860 году показал, что это не верно. Доклад был опубликован в том же журнале, в котором опубликовал свой доклад Джоуль. Но в отличие от статьи Джоуля, где был лишь намек, публикация Максвелла вошла краеугольным камнем в фундамент современной науки. В ней содержались формулы, при помощи которых можно получать правильные результаты.
Максвелл исходит из модели «неопределенного количества малых, твердых и совершенно упругих шаров, действующих друг на друга только во время столкновения».
«Если окажется, — пишет он, — что свойства подобной системы тел соответствуют свойствам газов, то этим будет создана важная физическая аналогия, которая может при-вести к более правильному познанию свойств материи». Далее Максвелл, следуя древней традиции, формулирует ряд «Предложений» и анализирует их, преимущественно методами геометрии.
В частности, он показывает, что при случайном соударении двух шаров все направления их последующего движения равновероятны. В следующем «Предложении» он решает задачу о распределении скоростей таких шаров, а значит, и молекул — одно из достижений, обессмертившее его имя. Далее он получает закон Авогадро, определившего из опыта число молекул, содержащихся в заданном количестве вещества. Первоначально Авогадро сформулировал результаты своего опыта так: плотность газов при одинаковых давлениях и температурах пропорциональна их молекулярным весам. Вычисления показали Максвеллу, что масса любого вещества, численно равная его молекулярному весу, всегда содержит одинаковое количество молекул.
Максвелл проводит расчеты многих газовых величин, ранее известных из опыта, и, в большинстве случаев, приходит к результатам, совпадающим с опытом. Однако, вычислив коэффициент трения текущего газа, он приходит к замечательному выводу о том, что этот коэффициент не зависит от плотности газа. Максвелл пишет: «Этот вывод из математической теории является крайне поразительным, и единственный опыт, с которым я встретился в этой области, как будто не подтверждает его».
Но Максвелл верит, что теория, объясняющая без дополнительных гипотез множество несвязанных явлений, должна быть правильна. В этом случае контрольный эксперимент показал, что опыт, известный Максвеллу, оказался ошибочным, Все другие опыты, специально поставленные для проверки теории, подтвердили ее предсказания. Для точности нужно добавить: в тех условиях, в которых применим прежний, классический подход. Но это уточнение потребовалось много позже.
Вскоре Максвелл предсказал, что его теория позволит определить размеры молекул и их количество в данном объеме при известной температуре и давлении. В 1865 году Лошмидт выполнил эту задачу.
Конечно, o и раньше, начиная с Ломоносова, ученые определяли размеры молекул, исходя из размеров тонких листков металлов и кварцевых нитей. Получались, главным образом, оценки верхних пределов — «не больше, чем». Теперь положение изменилось. Теория дала регулярный метод, а потом появились и другие способы, основанные на модели молекул — упругих шарах.
Молекулярно-кинетическая теория газов трудами Максвелла и Больцмана, Гиббса и Планка переросла в кинетическую теорию материи, охватившую не только газы, но и жидкости и твердые тела. Ее основным методом стала математическая статистика. Ее результаты объясняли все известные ранее факты и предсказывали новые, которые подтверждались специально поставленными опытами.
Кинетическая теория материи стала таким же неотъемлемым элементом классической физики, как механика Ньютона и электродинамика, созданная Максвеллом после его работ по кинетической теории.