Предчувствия и свершения. Книга 2. Призраки
Шрифт:
Думай, думай, шепчет дьявол. Заслонка слишком идеальная. Нужно ввести трение, и она остановится. Дьявол хитер. Трение действительно нарушает симметрию механических процессов, делает их необратимыми. Ведь трение преобразует механическую энергию в тепловую. Трение вводит в игру термодинамику с ее Вторым началом, утверждающим необратимость тепловых процессов.
Однако, введя трение, нужно присмотреться к процессу повнимательнее. Откуда берет энергию пляшущая заслонка, какая энергия превращается в тепловую? Это часть энергии молекулы, толкнувшей заслонку. Упростив задачу, мы не учли, что, толкая заслонку, молекула отдает ей часть энергии и влетает в левую половину цилиндра с уменьшенной скоростью. Так, в первом опыте молекулы,
Дьявол не без успеха прельщал многих возможностью создания вечного двигателя. Сперва простого, не считающегося с Первым началом термодинамики. Потом более сложного, не считающегося со Вторым началом. Дьявол пытается скрыть от человека, что к любым машинам, «производящим» энергию, нужно подводить ее извне. Ведь в каждой замкнутой системе ее запас постоянен, могут изменяться лишь ее формы, переходя одна в другую. Но тепловая энергия занимает при этом особое положение. Ее нельзя без остатка преобразовать в другие формы энергии.
Невозможность вечного двигателя покоиться не только на отрицательном опыте многих изобретателей, хотя этого было достаточно для Стевина и Карно, считавших эту невозможность не подлежащей сомнению. После создания термодинамики эта невозможность воплотилась в принцип сохранения энергии, называемый Первым началом термодинамики, и во Второе начало термодинамики, указывающее направление реальных тепловых процессов в природе. Оно покоится на утверждении Карно: в реальных процессах тепло может самопроизвольно протекать только от нагретых тел к холодным, а не наоборот.
Но человек слаб, а дьявол хитер. Он вновь и вновь побуждает людей пытаться построить вечный двигатель, пусть не вечный двигатель, нарушающий закон сохранения энергии, а хотя бы вечный двигатель, обходящий Второе начало термодинамики.
Еще сравнительно недавно известному американскому физику Сцилларду пришлось специально доказывать, что никакой механизм, даже снабженный источником света и фотоприемником, которые помогли бы дьяволу заранее получить информацию о движении молекул, не сможет управлять заслонкой без затраты энергии, не сможет привести к созданию вечного двигателя. Но хитрость дьявола проявляется не только в подсказке заманчивых идей. Он способен притаиться, давая людям возможность впасть в гордыню, чтобы потом ввергнуть их в адские сомнения.
Молекулярно-кинетическая теория, несмотря на выявившиеся трудности, шагала от успеха к успеху без единого поражения. Все казалось ей доступным, нужно лишь потрудиться и разобраться в деталях. Она позволила определить теплоемкость газов и вычислить величину универсальной газовой постоянной. Причем все эти вычисления поражали своей простотой, доступностью. Никакой мистики чисел! За основу надо взять величину газовой постоянной, пересчитанную на одну молекулу, и учесть, что на каждую степень свободы придется по половине этой газовой постоянной. Молекулы одноатомных газов могут перемещаться в пространстве по горизонтали, по вертикали и перпендикулярно этим направлениям. Значит, они обладают тремя степенями свободы. Чтобы получить их теплоемкость, нужно три раза взять половину газовой постоянной — 3ґ1/2=1/2 Для двухатомных газов, которые могут не только перемещаться в пространстве, но и вращаться в двух плоскостях (то есть имеют пять степеней свободы), получается 5ґ1/2=5/2 газовой постоянной.
Удивительно, но и для твердого тела оказалось справедливо то же правило вычисления теплоемкости. Кинетическая теория указывает простейший путь к ответу. Вот он: каждый атом твердого тела может колебаться в трех направлениях вокруг своего положения равновесия — значит, у каждого атома и здесь по три степени свободы. Эти движения дают вклад в теплоемкость, составляющий 3/2 газовой постоянной. Но при колебаниях атомов в твердом теле следует учесть не только энергию их движения. При колебаниях атомов работают и упругие силы, причем потенциальная энергия упругих сил точно равна кинетической энергии колебаний атомов. Значит 3/2 нужно удвоить. Получается ровно 3, независимо от конкретных свойств атомов.
Соблазнительно просто, а главное — в полном соответствии с давно известным законом Дюлонга и Пти, которые еще в 1819 году установили, что для любого твердого тела произведение удельной теплоемкости на атомный вес постоянно. Хоть этот закон и был известен, но оставался совершенно непонятным и загадочным. Теплоемкость всех тел одинакова, утверждает этот закон. Многие ученые проверяли его для многих металлов в широком интервале температур и обнаружили хорошее соответствие. Не точное, но достаточное, считали они.
И тут дьявол снова вышел на сцену. Подумайте, сказал он иронически: как все замечательно получается! По половине газовой постоянной на каждую степень свободы… Хорошо, давайте писать R/2, чтобы не тратить много слов. Итак, теплоемкость одноатомных газов равна 3/2R, ведь у них 3 степени свободы. Это у вас получилось точно. А почему для двухатомных газов не получается точно 5/2R? Ведь у них 5 степеней свободы на каждую молекулу. А почему у твердых тел не точно 3R, ведь у них 6 степеней свободы на каждый атом. Проверьте — во многих случаях расхождение заметно превосходит ошибки измерений. Что-то не ладно в самих основах «безупречной» молекулярно-кинетической теории!
И дьявол начинает издеваться: вы говорите, по R/2 на каждую степень свободы! Но ведь теория врет и для одноатомного газа. Ведь вы считаете атомы маленькими, но не точечными. Вы даже измеряете их размеры. Но если они шарики, то они не только летают, но и могут вращаться, значит, у них не по 3, а по 6 степеней свободы. Значит, вы неправильно рассчитали их теплоемкость. Должно быть не 3/2R, а вдвое больше — 3R. А опыт дает 3/2R! Как быть? Идем дальше. Если вращается вокруг своей оси двухатомная молекула, то у нее не 5 степеней свободы, а 6. Кроме того, молекула не абсолютно твердое тело. Ее атомы колеблются. Тогда у двухатомной молекулы 7 степеней свободы. Ее теплоемкость должна быть 7/2R, а опыт чаще всего дает 5/2R. Но что это за закон, который то выполняется, то нет? Взгляните в справочник, для каждого газа опыт дает свое значение теплоемкости, причем оно не постоянно, а зависит от температуры! Чему вы так наивно радовались?
Как же нужно вести расчет?
Так величайший триумф классической физики грозил обернуться катастрофой, ибо это были вопросы без ответа.
Ах, как не прав был Филипп Жолли, учитель Планка, профессор в Мюнхене, говоря, что теоретическая физика к началу XX века завершила свое развитие и осталось лишь уточнить детали. И почему-то ему никто не возражал. Более того, многие разделяли эту точку зрения. Даже всеми уважаемый Дж. Дж. Томсон, президент Королевского общества Англии, прощаясь с XIX веком, выразил ту же мысль почти теми же словами — наука вошла в спокойную гавань, все кардинальные вопросы решены, осталось лишь уточнить детали.