Превращение элементов
Шрифт:
Гипотезу Авогадро Канниццаро назвал краеугольным камнем развития атомной теории Дальтона, которая, основываясь только на весовых и объёмных соотношениях, становилась непригодной для экспериментальных исследований. Не надо удивляться, утверждал он, необходимости в гипотезе Авогадро для понимания законов. Именно неприятие идей Авогадро и привело к неудачам многих химиков и даже такого прославленного учёного, как Берцелиус.
С огромным воодушевлением произнёс свою речь Канниццаро, и члены конгресса, несмотря на те несогласия, которые были между ними до этого, встретили её почти единодушным одобрением. Когда предложили резолюцию, в которой характеризовалось различие понятий
После конгресса в Карлсруэ отошли в прошлое разногласия, стоявшие на пути развития экспериментальных определений в химии, а атомный вес стал важнейшей характеристикой элемента.
Более чем на сто лет опередил М.В. Ломоносов всех химиков Европы. В своей незавершённой работе «Элементы математической химии» он дал представление о строении вещества, подобное тому, что приняли химики лишь после конгресса в Карлсруэ. Он писал, что «корпускула (так он называл молекулу) — собрание элементов (т. е. атомов) в одну незначительную массу. Корпускулы однородны, если состоят из одинакового числа одних и тех же элементов, взаимосоединённых одинаковым образом. Корпускулы разнородны, когда элементы их различны и соединены разным образом или в различном числе; от этого зависит бесконечное разнообразие тел. Начало есть тело, состоящее из однородных молекул».
Можно, пожалуй, сказать, что математической химия получила право называться лишь с принятием идей Авогадро, чего так блестяще добился Канниццаро. Ломоносов к этому стремился задолго до знаменитого конгресса. Но, как было уже сказано, работы нашего великого соотечественника не были широко известны на Западе. К тому же сомнительно, чтобы его идеи и выводы были тогда поняты и приняты: они опережали время. По этой же причине пребывала в забвении более поздняя молекулярная теория Авогадро; по этой же причине в известной степени конгресс в Карлсруэ спорные вопросы решил голосованием — случай в науке беспрецедентный.
Да и не истину декретировали участники конгресса, если быть точным. Они обменялись информацией и попытались разрешить кризис путём принятия согласованной платформы для дальнейшего продвижения к истине. «Решающим моментом в развитии моей мысли о периодическом законе я считаю 1860 г., съезд химиков в Карлсруэ, в котором я участвовал, и на этом съезде идеи, высказанные итальянским химиком С.Канниццаро. Его я и считаю настоящим моим предшественником, так как установленные им атомные веса дали необходимую точку опоры». Эти слова Д.И.Менделеева как нельзя лучше характеризуют значение конгресса.
Именно потому, что научная истина не есть то, что принимается голосованием, положение в химии после конгресса не стало идиллическим. Борьба продолжалась. Одни были полностью «за» атомно-молекулярную теорию; другие принимали её постольку, поскольку она казалась неплохим «инструментом» познания; третьи не признавали её совсем.
А в промежутках между этими группами (и внутри групп), как в промежутках между большими дробинками-атомами Дальтона, — переходы, оттенки, колебания. И так до тех пор, пока атом не стал для науки реальностью.
Именно поэтому же нельзя утверждать, что идея трансмутации металлов, получив от атомистики весьма ощутительный удар, почила в бозе. Отнюдь нет. Она удерживала за собой ещё немало «опорных пунктов». Так, например, в 20-х гг. XIX в. было открыто поразительное явление — изомерия: вещества, отличающиеся друг от друга физическими и химическими свойствами, по непонятной причине имеют одинаковый элементарный состав. То же самое с другим непонятным
На рубеже XVIII и XIX вв. химик Винтерль занимался опытами по «разложению» металлов. Никаких реальных результатов он не добился, но сама идея уцелела. Уже после 1860 г. химик Стас не скрывал своего позитивного к ней отношения и потратил немало усилий, чтобы получить ответ на вопрос: не распадаются ли химические элементы на другие, более лёгкие? А сколько раз подвергался проверке закон постоянства состава! И совсем не ради самой проверки: если бы закон экспериментально не подтвердился, то это означало бы, что при различных химических реакциях атомы элементов не остаются неизменными.
Даже Д.И.Менделеев в 60-е годы (после конгресса!), хотя и не признавал безоговорочно — из-за отсутствия экспериментальных подтверждений — принципиальную возможность взаимопревращаемости элементов, относился к ней тогда в целом сочувственно.
Торжество спектра
В том же 1860 г. химики вооружились таким инструментом исследования, о котором не смели и мечтать, — методом спектрального анализа.
К многоцветной дуге на небесном своде, возникающей иногда после дождя, привыкли. Ею восхищались, любовались, иногда и преклонялись, но почему она появляется — никто ничего сказать не мог и ограничивался ссылкой на волю и дар вседержителя — Бога.
В 1675 г. Ньютон, пропустив луч света через призму, получил радугу на стене. Вместо обычного белого пятна он увидел изображение, окрашенное в переходящие постепенно друг в друга цвета — от фиолетового до красного. Ньютон назвал его спектром. Он обнаружил, что белый свет (и цвет) — это некое сложное образование, которое с помощью очень простых средств легко разложить на составляющие.
Но прежде чем заявить об этом во всеуслышание, Ньютон, точности ради и чтобы обезопасить себя от нападок коллег, поставил контрольный опыт. На пути луча он вместо одной призмы поставил две, одну за другой. Первая стояла на основании, вторую он клал на ребро. В опыте только с одной — первой — призмой спектр был, а вот когда на пути луча появлялась вторая призма, спектр исчезал и на экране светилось обычное белое пятно. Вывод мог быть только один: вторая призма снова собирала воедино лучи разного цвета, «смешивала» их и получался прежний белый свет.
В истории науки хорошо известны случаи, когда очень важные открытия делались не высокоучёными мужами, а людьми, не имеющими образования. Таким был, в частности, привратник ратуши и торговец шерстью голландец Антони Левенгук, живший в XVII в. У него было, как это принято ныне называть, хобби: с исключительным трудолюбием и увлечённостью шлифовал он линзы. Из них делал увеличительные приборы, украшал их серебром и золотом, а потом рассматривал через них всякую всячину. Коллеги по купеческой гильдии считали, что Левенгук занимается этим в ущерб своим делам. Но мы теперь знаем, что от его занятий выиграла наука. Левенгук открыл капиллярное кровообращение, ячеистое строение кожи, а в каплях воды и в соскобе со своих собственных зубов — мир живых существ, о котором никто до этого и не подозревал. О своих наблюдениях Левенгук сообщал в письмах, регулярно направляемых в Лондонское Королевское общество. Сообщения торговца шерстью производили там весьма и весьма сильное впечатление.