Прикладное программное обеспечение: системы автоматической обработки текстов

на главную

Жанры

Поделиться:

Прикладное программное обеспечение: системы автоматической обработки текстов

Шрифт:

1. Сферы применения систем автоматической обработки текстов

Системы автоматической обработки текста (т.е. переработки одного вида текста в памяти ЭВМ в другой) по выполняемым функциям (входной и выходной информации) можно классифицировать следующим образом:

Язык входного текста

Язык выходного текста

1

Естественный-1

Естественный-2

2

Искусственный

Естественный

3

Естественный

Искусственный /

Естественный

4

Естественный

Естественный + { Искусственный}

К системам первого типа относятся программы машинного перевода, получающие текст на некотором естественном языке и перерабатывающие его в текст на другом естественном языке. Второй тип - системы генерации (синтеза) текстов по некоторому формальному описанию. Системы третьего типа, наоборот, перерабатывают текст на естественном языке в текст на искусственном (индексирование, извлечение смыслового содержания) или в другой текст на естественном языке (реферирование). К последнему классу отнесем программы, занимающиеся проверкой текста, написанного на естественном языке. Они в результате своей работы либо исправляют входной текст автоматически, либо формируют некоторый протокол замечаний.

Естественный язык - сложная, многоплановая система, с множеством правил, внутренних связей, имеющая отношение ко всем аспектам деятельности человека. Точность и правильность работы программ определяется глубиной анализа. Достаточно глубокий анализ пока достигается только для определенных узких предметных областей (из-за специфичности подъязыка такой области: в каждой области свои термины, специфические семантические отношения и т.п.).

Для создания систем, работающих со всем естественным языком без потери глубины анализа, в настоящий момент не хватает либо технических возможностей (быстродействия, памяти), либо теоретической базы (например, пока нет даже единой схемы достаточно полного, глубокого и непротиворечивого описания семантики естественного языка). Однако в коммерческих системах, ввиду того, что предназначаются они для большого количества пользователей, разных предметных областей, принята концепция поверхностного анализа, к тому же и производится такой анализ значительно быстрее. Дальнейшее продвижение вперед, использование естественного языка в практических областях невозможно без оснащения этих систем обширными и глубокими (с точки зрения охвата различных явлений языка) описаниями и моделями, созданными лингвистами-профессионалами.

Эта тенденция прогнозируется многими исследователями и прослеживается на примере развития АОТ-систем, уже в наши дни представляющих коммерческий интерес и использующихся при решении следующих прикладных задач:

1. Machine Translation and Translation Aids - машинный перевод;

2. Text Generation - генерация текста;

3. Localization and Internationalization - локализация и интернационализация;

4. Controlled Language - работа на ограниченном языке;

5. Word Processing and Spelling Correction - создание текстовых документов (ввод, редактирование, исправление ошибок)

6. Information Retrieval - информационный поиск и связанные с ним задачи.

Отметим, что это деление несколько условное, и в реальных системах часто встречается объединение функций. Так, для машинного перевода требуется генерация текста, а при исправлении ошибок приходится заниматься поиском вариантов словоформы и т.д.

1.1. Машинный перевод

Исторически машинный перевод является первой попыткой использования компьютеров для решения невычислительных задач (знаменитый Джорджтаунский эксперимент в США в 1954 г.; работы по машинному переводу в СССР, начавшиеся в 1954 г.). Развитие электронной техники, рост объема памяти и производительности компьютеров создавали иллюзию быстрого решения этой задачи. Идея захватила воображение ученых и администраторов. Практическая цель была простой: загрузить в память компьютера максимально возможный словарь и с его помощью из иноязычных текстов получать текст на родном языке в удобочитаемом виде. Однако первоначальная эйфория по поводу того, что столь трудоемкую работу можно поручить ЭВМ, сменилась разочарованием в связи с абсолютной непригодностью получаемых текстов. Приведем в качестве примера результаты работы одной из современных коммерческих систем перевода. Предложим ей перевести народное английское стихотворение, известное нам в переводе "Робин-Бобин" (текст этот очень простой, московские дети изучают его в начальной школе):

Robin, Robin, what a man! He eats as much as no one can. He ate a lot of fish, he ate a lot of meat. He ate a lot of ice-cream and a sweet. He ate a lot of porridge and ten eggs And all the cookies Mother had. He drank a lot of juice, he ate a cake Then said: "I have a stomach-ache" Малиновка, Малиновка, какой человек! Он ест насколько никто не может. Он съел много рыб, он съел много мяс. Он съел много ледяных-сливки и сладкий. Он съел много каша и десять яйцо И вся Мать повары имела. Он пил много соков, он съел торт Затем сказал: "У меня есть желудок- боль"

Сравним с художественным переводом К.Чуковского:

Робин Бобин Барабек Скушал сорок человек. И корову, и быка, И кривого мясника, И телегу, и дугу, И метлу, и кочергу. Скушал церковь, скушал дом, И кузницу с кузнецом, А потом и говорит: – У меня живот болит!

Следующий пример показывает неустойчивость системы машинного перевода при обработке неоднозначностей. Два предложения по отдельности "Flyer flies." и "Flyers fly." переводятся "Летчик летает." и "Летчики летают.", если же из тех же словосочетаний составить одно предложение "Flyer flies and flyers fly" получаем "Летчик летает и муха летчиков.".

Конечно, системы, настроенные на определенную предметную область, дают гораздо более приемлемые результаты. Однако в этом случае системы перевода получаются очень узко ориентированными, и попытка использовать их даже в смежных предметных областях дает совершенно непредсказуемые результаты. Подобные эксперименты даже распространены среди любителей пошутить: инструкция по эксплуатации манипулятора-мыши, переведенная с английского языка на русский системой автоматического перевода, использующей специализированный медицинский словарь, превращается в описание всевозможных издевательств над несчастным маленьким грызуном.

Возникают эти проблемы из-за принципиально разных подходов к переводу человека и машины. Квалифицированный переводчик понимает смысл текста и пересказывает его на другом языке словами и стилем, максимально близкими к оригиналу. Для компьютера этот путь выливается в решение двух задач: 1) перевод текста в некоторое внутреннее семантическое представление и 2) генерация по этому представлению текста на другом языке. Поскольку не только не решена сама по себе ни одна из этих задач, а нет даже общепринятой концепции семантического представления текстов, при автоматическом переводе приходится фактически делать "подстрочник", заменяя по отдельности слова одного языка на слова другого и пытаясь после этого придать получившемуся предложению некоторую синтаксическую согласованность. Смысл при этом может быть искажен или безвозвратно утерян.

Более реалистичными являются попытки создать системы автоматизированного перевода– программы, которые не берут на себя полностью весь перевод, а лишь помогают человеку-переводчику справиться с некоторыми трудностями (Computer Aided Translation). Одним из примеров таких систем является Eurolang Optimizer. Его можно рассматривать как нечто переходное между компьютерным словарем и программой-переводчиком, как некий набор предметно-ориентированных глоссариев, снабженный интерфейсом для удобства переводчика: предлагается несколько вариантов перевода, выделенные разными цветами в зависимости от условий применимости; переводчик может с помощью меню определенным образом настраивать словари для более быстрого и правильного выбора нужного эквивалента.

Комментарии:
Популярные книги

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Авиатор: назад в СССР 10

Дорин Михаил
10. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 10

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Неестественный отбор.Трилогия

Грант Эдгар
Неестественный отбор
Детективы:
триллеры
6.40
рейтинг книги
Неестественный отбор.Трилогия

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4