Программирование на языке пролог
Шрифт:
(Для каждого X, во-первых, Xявляется выходным днем или Крис работает в день X; во-вторых, либо X– выходной день, либо Крис сердитый или унылый).
Формула, имеющаяся к началу этого этапа, в общем случае представляет совокупность конъюнктивных членов, являющихся литералами или состоящих из литералов, соединенных дизъюнкцией. Давайте сначала рассмотрим структуру формулы на верхнем уровне, не вникая в детали организации конъюнктивных членов. Формула могла бы иметь, например, следующий вид:
(А & В) & (С & (D & Е))
где переменные обозначают, возможно,
(А & В) & (С & (D &Е)) А &(( В& С) & (D &Е)) (А & В) & ((С &D) &Е )
обозначают одно и то же. И хотя структурноэти формулы различны, они имеют один и тот же смысл. Это объясняется тем, что если установлена истинность всехвысказываний из некоторого множества, то не имеет значения каким образом они группируются в сложное конъюнктивное высказывание. Не имеет значения, например, как сказать « Аистинно и Ви Стакже истинны» или « Аи Вистинны и Стоже истинно». Следовательно, скобки никак не влияют на смысл формулы. Можно просто написать (неформально):
A & B & C & D & E
Далее, порядок записи этих формул также не имеет значения. Безразлично, как сказать: « Аи Вистинны» или « Ви Аистинны», так как оба эти высказывания имеют одно и то же значение. И наконец, нет необходимости указывать знак конъюнкции (&) между формулами, так как заранее известно, что на верхнем уровне формула является конъюнкцией составляющих ее частей. Поэтому, в действительности, значение представленной формулы можно выразить значительно короче, представив ее в виде совокупности {А, В, С, D, Е}. Название «совокупность» подчеркивает, что порядок элементов не имеет значения. Совокупность {А, В, С, D, Е}в точности то же самое, что и {В, А, С, Е, D}, {Е, D, В, С, А}и так далее. Формулы, являющиеся элементами совокупности, полученной в результате преобразования некоторой формулы исчисления предикатов, называются дизъюнктами. Таким образом, каждая формула исчисления предикатов эквивалентна (в некотором смысле) совокупности дизъюнктов.
Давайте рассмотрим несколько подробнее, что представляют собой эти дизъюнкты. Как уже было сказано, они состоят из литералов, соединенных друг с другом с помощью дизъюнкции. В общем случае, дизъюнкт выглядит примерно так:
((V # W) # X) # (Y # Z)
где переменные являются литералами. Теперь те же самые рассуждения, которые были сделаны о структуре формулы на верхнем уровне, можно применить к дизъюнктам. Как и выше, скобки не влияют на значение дизъюнкта. Точно так же несуществен и порядок литералов. Таким образом, можно просто сказать, что дизъюнкт – это совокупностьлитералов (неявно соединенных дизъюнкцией). В последнем примере это будет {V, W, X, Y, Z}
Теперь исходная формула представлена в стандартной форме. Более того, использовавшиеся для преобразования правила не зависят от того, существует или нет интерпретация, при которой формула истинна. Стандартная форма состоит из совокупности дизъюнктов, каждый из которых представляет совокупность литералов. Литерал –
(выходной(Х) # работает(крис,Х)) & (выходной(Х) # (сердитый(крис) # унылый(крис)))
Эта формула порождает два дизъюнкта. Первый дизъюнкт содержит литералы:
выходной(Х), работает(крис,Х)
а второй литералы:
выходной(Х), сердитый(крис), унылый(крис)
Другой пример. Формула
(человек(адам)& человек(ева))&
((человек(Х) # ~мать(Х,Y)) # ~человек(#))
дает три дизъюнкта. Два из них содержат по одному литералу каждый
человек (адам)
и
человек (ева)
Другой содержит три литерала:
человек(Х), ~мать(Х,Y), ~человек(Y)
В заключении этого раздела рассмотрим еще один пример, демонстрирующий все этапы приведения формулы к стандартному виду. Начнем с формулы
all(X, аll(Y,человек(Y) -› почитает(Y,Х) -› король(Х))
утверждающей, что, если все люди относятся с почтением к некоторому человеку, то этот человек является королем. (Для каждого X, если каждый Yявляется человеком, почитающим X, то X– это король). После устранения импликации (этап 1) получаем:
аll(Х,~(аll(Y,~человек(Y) # почитает(Y,Х))) # король(Х))
Перенос отрицания внутрь формулы (этап 2) приводит к следующему:
аll(Х,ехists(Y,человек(Y) & ~почитает(Y,Х)) # король(Х))
Затем, в результате сколемизации (этап 3) формула преобразуется к виду:
аll(Х,(человек(f1(Х)) & ~почитает(f1Х),Х)) # король(Х))
где f1 -сколемовская функция. Теперь производится удаление кванторов всеобщности (этап 4), что приводит к формуле;
(человек(f1(X)) & ~почитает(f1(Х),X)) # король(Х)
Затем формула преобразуется к конъюнктивной нормальной форме (этап 5), в которой конъюнкция не появляется внутри дизъюнктов:
(человек(f1(Х) # король(Х)) & (~почитает(f1(Х), X) # король(Х))
Эта формула содержит два дизъюнкта (этап 6). Первый дизъюнкт имеет два литерала:
человек(f1(Х)), король(Х)
а второй дизъюнкт имеет литералы:
почитает(f1(Х),Х), король(Х)
10.3. Форма записи дизъюнктов
Очевидно, что для записи формул, представленных в стандартной форме, необходим соответствующий способ. Рассмотрим его. Прежде всего, стандартная форма представляет совокупность дизъюнктов. Договоримся записывать дизъюнкты последовательно один за другим, помня при этом, что порядок записи не имеет значения. В свою очередь, дизъюнкт является совокупностью литералов, часть из которых содержит отрицание, а часть не содержат его. Примем соглашение записывать сначала литералы без отрицания, а затем литералы с отрицанием. Эти две группы литералов будем разделять знаком ':-'. Литералы без отрицания при записи будем отделять друг от друга точкой с запятой (;) (помня, конечно, при этом, что порядок записи литералов в каждой группе неважен), а литералы с отрицанием будем записывать без знака отрицания (~), разделяя литералы запятыми. Запись каждого дизъюнкта будет заканчиваться точкой. При такой форме записи дизъюнкт, содержащий отрицания литералов K, L,… и литералы А, В,… мог бы быть представлен так: