int available const; // количество доступных байтов
private:
// память для char[N] и данные, позволяющие определить, какие
// объекты извлечены из стека, а какие нет (например,
// указатель на вершину)
};
Поскольку функция
get
возвращает указатель
void*
, ссылающийся на требуемое количество байтов, мы должны конвертировать эту память в тип, требуемый для наших объектов. Этот стек можно использовать, например, так.
Stack<50*1024> my_free_store; // 50K памяти используется как стек
называется синтаксисом размещения. Она означает следующее: “Создать объект в ячейке памяти, на которую ссылается указатель
pv2
”. Сама по себе эта конструкция не размещает в памяти ничего. Предполагается, что в классе Connection есть конструктор со списком аргументов (
incoming,outgoing,buffer
). Если это условие не выполняется, то программа не скомпилируется.
Естественно, наш шаблонный класс
Stack
представляет собой всего лишь один из вариантов общей идеи о стеке. Например, если ограничения на использование памяти не такие строгие, то мы можем определить стек, в котором количество доступных байтов задается конструктором.
25.4. Адреса, указатели и массивы
Предсказуемость требуется в некоторых встроенных системах, а надежность — во всех. Это заставляет нас избегать некоторых языковых конструкций и методов программирования, уязвимых для ошибок (в контексте программирования встроенных систем). В языке С++ основным источником проблем является неосторожное использование указателей.
Выделим две проблемы.
• Явные (непроверяемые и опасные) преобразования.
• Передача указателей на элементы массива.
Первую проблему можно решить, строго ограничив использование явных преобразований типов (приведения). Проблемы, связанные с указателями и массивами, имеют более тонкие причины, требуют понимания и лучше всего решаются с помощью (простых) классов или библиотечных средств (например, класса array; см. раздел 20.9). По этой причине в данном разделе мы сосредоточимся на решении второй задачи.
25.4.1. Непроверяемые преобразования
Физические ресурсы (например, регистры контроллеров во внешних устройствах) и их основные средства управления в низкоуровневой системе имеют конкретные адреса. Мы должны указать эти адреса в наших программах и присвоить этим данных некий тип. Рассмотрим пример.
Device_driver* p = reinterpret_cast<Device_driver*>(0xffb8);
Эти преобразования описаны также в разделе 17.8. Именно этот вид программирования требует постоянного использования справочников. Между ресурсом аппаратного обеспечения — адресом регистра (выраженного в виде целого числа, часто шестнадцатеричного) —
и указателями в программном обеспечении, управляющим аппаратным обеспечением, существует хрупкое соответствие. Вы должны обеспечить его корректность без помощи компилятора (поскольку эта проблема не относится к языку программирования). Обычно простой (ужасный, полностью непроверяемый) оператор
reinterpret_cast
, переводящий тип
int
в указатель, является основным звеном в цепочке связей между приложением и нетривиальными аппаратными ресурсами.
Если явные преобразования (
reinterpret_cast
,
static_cast
и т.д.; см. раздел A.5.7) не являются обязательными, избегайте их. Такие преобразования (приведения) бывают необходимыми намного реже, чем думают программисты, работающие в основном на языках C и C++ (в стиле языка С).
25.4.2. Проблема: дисфункциональный интерфейс
Как указывалось в разделе 18.5.1, массив часто передается функции как указатель на элемент (часто как указатель на первый элемент). В результате он “теряет” размер, поэтому получающая его функция не может непосредственно определить количество элементов, на которые ссылается указатель. Это может вызвать много трудноуловимых и сложно исправимых ошибок. Здесь мы рассмотрим проблемы, связанные с массивами и указателями, и покажем альтернативу. Начнем с примера очень плохого интерфейса (к сожалению, встречающегося довольно часто) и попытаемся его улучшить.
void poor(Shape* p, int sz) // плохой проект интерфейса
{
for (int i = 0; i<sz; ++i) p[i].draw;
}
void f(Shape* q, vector<Circle>& s0) // очень плохой код
{
Polygon s1[10];
Shape s2[10];
// инициализация
Shape* p1 = new Rectangle(Point(0,0),Point(10,20));
poor(&s0[0],s0.size); // #1 (передача массива из вектора)
poor(s1,10); // #2
poor(s2,20); // #3
poor(p1,1); // #4
delete p1;
p1 = 0;
poor(p1,1); // #5
poor(q,max); // #6
}
Функция
poor
представляет собой пример неудачной разработки интерфейса: она дает вызывающему модулю массу возможностей для ошибок и не оставляет никаких надежд защититься от них на этапе реализации.
ПОПРОБУЙТЕ
Прежде чем читать дальше, попробуйте выяснить, сколько ошибок вы можете найти в функции
f
? В частности, какой из вызовов функции
poor
может привести к краху программы?
На первый взгляд данный вызов выглядит отлично, но это именно тот вид кода, который приносит программистам бессонные ночи отладки и вызывает кошмары у инженеров по качеству.
1. Передается элемент неправильного типа (например,