Чтение онлайн

на главную

Жанры

Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной
Шрифт:
Искривление времени

Пятью годами позже французский ученый Анри Пуанкаре (1854–1912) написал статью «Измерение времени», в которой оспаривал наше непреклонное отношение ко времени. Если Лоренц представлял искривление времени просто как математический трюк, то Пуанкаре (не ссылаясь явно на Лоренца) показал, что в будущем, по-видимому, придется отказаться от концепции единства физического времени. Этот своеобразный философский прорыв помог в дальнейшем Эйнштейну сформулировать свою теорию относительности.

С философской точки зрения второй побуждающий импульс для творчества Эйнштейна исходил от австрийского физика и философа Эрнста Маха (1838–1916). В своей книге «Механика. Историко-критический очерк ее развития» (1883) Мах утверждал, что мы никогда не должны говорить об абсолютном движении тела; мы можем говорить только о его движении относительно чего-либо.

Итак, почва для

Эйнштейна была готова. В статье «Об электродинамике движущихся тел» он выдвинул два предположения:

1. Законы физики остаются одинаковыми в любой системе отсчета, движущейся с постоянной скоростью.

2. Мы должны со всей серьезностью относиться к уравнениям Максвелла – любой луч света движется в любой такой системе отсчета с одинаковой скоростью.

Об Альберте Эйнштейне

Альберт Эйнштейн родился на юго-западе Германии в городе Ульме 14 марта 1879 года. Он был вторым ребенком в семье Германа Эйнштейна, основателя электрической инженерной компании, и его жены Паулины. Семья, которая происходила из евреев-ашкеназов, не соблюдавших религиозные ритуалы, вскоре переехала в Мюнхен, где Альберт и пошел в школу.

В возрасте 17 лет Эйнштейн поступил в швейцарскую Федеральную политехническую школу в Цюрихе, чтобы получить диплом преподавателя физики и математики. Здесь же он познакомился со своей сокурсницей Милевой Марич, на которой женился в 1903 году. Из переписки супругов, обнаруженной в 1987 году, следует, что еще до официальной регистрации брака, в 1902 году, у них родилась дочь. Судьба этой девочки неизвестна: может быть, она была удочерена третьими лицами либо умерла в младенчестве. Позднее у супругов родились два сына, Ганс и Эдуард. Но семейная жизнь не удалась, и в 1919 году супруги развелись, после чего Альберт Эйнштейн женился на своей кузине Эльзе Лёвенталь, урожденной Эйнштейн.

После окончания высшего учебного заведения Эйнштейн провел два года в неудачных поисках преподавательской работы и, в конце концов, поступил на работу в Швейцарское патентное бюро. Именно здесь, в свободное время, он сделал свои первые открытия и написал замечательную серию статей в знаменательный для него 1905 год (см. «Чудесный год» в главе 2). Все его труды привели к тому, что в 1908 году он был назначен преподавателем в Бернском университете в Швейцарии. Довольно скоро Эйнштейн получил должность профессора в Цюрихском университете. К 1914 году он уже являлся профессором Берлинского университета. Без малого два десятка лет Эйнштейн работал в этом университете. Затем политическая ситуация в Германии изменилась, нацистские власти стали преследовать евреев, запрещая им занимать преподавательские должности в университетах. В 1933 году Эйнштейн отказался от гражданства Германии и уехал в Америку. Он получил работу в Институте перспективных исследований в Принстоне (штат Нью-Джерси) и работал там до пенсии.

Эйнштейн знаменит не только своими замечательными научными открытиями. Он был страстным любителем музыки, пацифистом, борцом за права человека и сторонником сионизма. Он умер от аневризмы в 1955 году в возрасте 76 лет. Место, где развеян его прах, неизвестно. Мозг ученого был сохранен (см. далее в этой главе).

Относительно специальная

Несколько коротких страниц статьи Эйнштейна, как рог изобилия, вместили в себя все те постулаты, которые мы сейчас называем специальной теорией относительности. Многие данные были известны и ранее, но теперь они были собраны вместе и получили ясную физическую интерпретацию. Стало ясно, например, что замедление времени вполне реально: находящиеся в движении часы действительно должны запаздывать. Возможно, благодаря крепкому фундаменту, заложенному Лоренцем и Пуанкаре, специальная теория относительности Эйнштейна, предложенная им в 1905 году, не вызвала больших возражений. Конечно, она не произвела такого фурора, как последующая за ней общая теория относительности, для создания которой потребовалось еще более десятка лет.

Первый результат в этом направлении был получен польско-немецким математиком Германом Минковским (1864–1909), но он оказался малоутешительным. Минковский предложил лаконичное объяснение специальной теории относительности, соединив воедино пространство и время. События, разворачивающиеся в пространстве и времени, можно представить в виде карты: нижняя часть карты – это далекое прошлое, верхняя – отдаленное будущее, а слева и справа располагаются самые различные места в пространстве. Минковский понимал, что движение происходит по различным направлениям пространства-времени: вместо того, чтобы двигаться строго вверх, вы отклоняетесь то влево, то вправо. Математически это очень похоже на вращение, когда часть вашего пространства заменяется

временем, а часть вашего времени – пространством. Такая абстрактная картина правильно, в стройной и логичной манере, приводит к результатам специальной теории относительности.

Но Эйнштейн понимал, что специальная теория относительности имеет ограничения. Она корректно связывает различные системы координат только в том случае, если они движутся с постоянными скоростями. Эйнштейна также беспокоила роль гравитации. Наилучшей теорией гравитации на тот момент была теория всемирного тяготения Ньютона. Ньютон, как и Максвелл, стремился к объединению различных явлений: он показал, что та же сила, которая удерживает нас на поверхности Земли, удерживает и Луну от бегства в космическое пространство и заставляет Землю кружить вокруг Солнца. Эта теория работает прекрасно, но подразумевает наличие мгновенной притягивающей силы, подобно тому, как присутствие Земли у нас под ногами означает, что к нам с ее стороны приложена сила. В каждый момент времени мы чувствуем притяжение всех галактик, рассеянных в космосе. Такие представления не уживаются со специальной теорией относительности, в которой ничто не может распространяться мгновенно; чтобы уладить противоречия, приходится предположить, что скорость движения тел, а также их взаимодействия, не должна превышать скорость света.

Принцип эквивалентности

Первую попытку внедрить гравитацию в свою теорию Эйнштейн предпринял в 1907 году, сформулировав так называемый принцип эквивалентности. Он указал на то, что при падении мы как будто находимся в мире без гравитации. Окружающие нас предметы, находящиеся одновременно с нами в состоянии падения, будут казаться неподвижными, потому что падают с такой же скоростью. Именно это и происходит на Международной космической станции: то, что космонавты находятся в невесомости, вовсе не означает, что на них не действует поле притяжения Земли; просто космическая станция все время падает на Землю вместе с космонавтами. (Другое дело, что она никогда не упадет на нашу планету, так как одновременно двигается с высокой скоростью в горизонтальном направлении.)

Гению Эйнштейна, вдохновленному философскими воззрениями Маха, хватило смелости утверждать, что любой эксперимент, выполненный, например, в условиях космической станции, покажет такой же результат, как и при полном отсутствии гравитации. Это и есть принцип эквивалентности.

Самое любопытное, что теория гравитации Эйнштейна вытекала из глубоких размышлений о ситуациях, в которых сама сила, о которой идет речь, просто-напросто исчезает. Поэтому неудивительно, что потребовалось привлечь основательный математический аппарат, чтобы превратить идею в теорию, способную выдвинуть осмысленные предсказания. В 1913 году Эйнштейн в своих изысканиях взял на вооружение идею Минковского о пространстве-времени. Эйнштейн обнаружил, что верная картина движения объектов в гравитационном поле получится, если предположить, что пространство-время искривлено, а объекты пытаются проложить себе кратчайший путь через это искривленное пространство-время. Но понять, что заставляет пространство-время искривляться, он не мог.

На этих порах Эйнштейн начал сражение с математикой. В 1915 году в течение нескольких месяцев он вел бурную переписку со многими учеными, в особенности с немецким математиком Давидом Гильбертом (1862–1943). Работы Эйнштейна и Гильберта были настолько взаимосвязаны, что трудно точно сказать, кто из них первым создал уравнения гравитационного поля. Но, вне всякого сомнения, Эйнштейн был движущей силой в этом процессе. В конце концов, в ноябре 1915 года, в своей общей теории относительности он смог описать, как пространство-время искривляется под действием массы, энергии и давления:

Великий смысл заключается в этих нескольких символах. В течение шести месяцев после создания уравнений поля Эйнштейн написал статьи о гравитационных волнах. Это произошло за сто лет до того, как эти волны были непосредственно обнаружены (см. главу 4). Существование черных дыр также было предсказано вскоре после опубликования общей теории относительности (см. главу 3).

Другие последствия заставили себя ждать гораздо дольше. В 1949 году австрийско-американский математик и философ Курт Гёдель (1906–1978) предпринял атаку на теорию относительности. Любитель абсурдов, Гёдель сумел показать, что общая теория относительности разрешает совершать путешествия в прошлое. Подобное предположение является проклятием для физиков: ведь если мы можем вернуться в наше собственное прошлое, то что удержит нас от того, чтобы изменить его? Каждый любитель научной фантастики скажет вам, что ни к чему хорошему это не приведет.

Поделиться:
Популярные книги

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Идеальный мир для Социопата 7

Сапфир Олег
7. Социопат
Фантастика:
боевая фантастика
6.22
рейтинг книги
Идеальный мир для Социопата 7

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи

Приручитель женщин-монстров. Том 5

Дорничев Дмитрий
5. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 5

Мастер...

Чащин Валерий
1. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
6.50
рейтинг книги
Мастер...

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Приручитель женщин-монстров. Том 4

Дорничев Дмитрий
4. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 4

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Дракон

Бубела Олег Николаевич
5. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.31
рейтинг книги
Дракон

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Первый пользователь. Книга 2

Сластин Артем
2. Первый пользователь
Фантастика:
боевая фантастика
рпг
4.80
рейтинг книги
Первый пользователь. Книга 2

Последний попаданец 9

Зубов Константин
9. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 9

Запретный Мир

Каменистый Артем
1. Запретный Мир
Фантастика:
фэнтези
героическая фантастика
8.94
рейтинг книги
Запретный Мир