Прокачай мозг методом знатоков «Что? Где? Когда?»
Шрифт:
Мы вечно забываем, что нет на самом деле простых и однозначных отношений – ни между людьми, ни между техническими системами, также и между истиной и ложью их нет. В любой правде есть ложь и наоборот. Помните, как в детском фильме «Отроки во Вселенной» робот-исполнитель сгорел, пытаясь ответить на вопрос ребят «Кто остался на трубе?» Логика машинная и человеческая – это «две большие разницы» [32] .
«Лжец» уже одним только фактом своего существования поднял множество сложнейших вопросов и тем самым явился катализатором для генерации нового знания. Однако приходится признать, что разрешение его без каких-либо усовершенствований логики или языка не представляется возможным и, вероятно, ещё не все открытия на этом пути сделаны.
32
Высказывание
Поспорим? Решения парадокса «Еватл и Протагор»
Конспективно повторим разбор, данный А. А. Ивиным в книге «Логика», который будет особо полезен для работников юридического профиля:
«Протагор посвятил спору с Еватлом сочинение „Тяжба о плате“, которое, к сожалению, не дошло до нашего времени. Готфрид Вильгельм Лейбниц (1646–1716), будучи юристом по образованию, посвятил этому спору свою докторскую диссертацию „Исследование о запутанных казусах в праве“. Великий ученый пытался доказать, на примере тяжбы Протагора и Еватла, что все реальные случаи, даже самые запутанные, должны находить правильное разрешение на основе здравого смысла. По мнению Лейбница, суд должен отказать Протагору в возбуждении дела за несвоевременностью предъявления иска, но оставить, однако, за ним право потребовать уплаты денег позже, а именно после первого выигранного Еватлом процесса…
Рассмотрим некоторые другие решения данного парадокса.
Решение суда должно иметь большую силу, чем частная договоренность двух лиц. На это можно ответить, что не будь этой договоренности, какой бы незначительной она ни казалась, не было бы ни суда, ни его решения. Ведь суд должен вынести свое решение именно по её поводу и на её основе.
Обращались также к общему принципу, что всякий труд, а значит, и труд Протагора, должен быть оплачен. Но ведь известно, что этот принцип всегда имел исключения, тем более в рабовладельческом обществе. К тому же он просто неприложим к конкретной ситуации спора: ведь Протагор, гарантируя высокий уровень обучения, сам отказывался принимать плату в случае неудачи своего ученика в первом процессе.
И Протагор, и Еватл – оба правы частично, и ни один из них в целом. Каждый из них учитывает только половину возможностей, выгодную для себя. Полное или всестороннее рассмотрение открывает четыре возможности, из которых только половина выгодна для одного из спорящих. Какая из этих возможностей реализуется, это решит не логика, а жизнь. Если приговор судей будет иметь большую силу, чем договор, Еватл должен будет платить, только если проиграет процесс, т. е. в силу решения суда. Если же частная договоренность будет ставится выше, чем решение судей, то Протагор получит плату только в случае проигрыша процесса Еватлу, то есть в силу договора с Протагором.
Эта апелляция к жизни окончательно всё запутывает. Чем, если не логикой, могут руководствоваться судьи в условиях, когда все относящиеся к делу обстоятельства совершенно ясны? И что это будет за руководство, если Протагор, претендующий на оплату через суд, добьется её, лишь проиграв процесс?
Впрочем, и решение Лейбница, кажущееся вначале убедительным, не на много лучше, чем неясное противопоставление логики и жизни. В сущности, Лейбниц предлагает задним числом заменить формулировку договора и оговорить, что первым с участием Еватла судебным процессом, исход которого решит вопрос об оплате, не должен быть суд по иску Протагора. Мысль эта глубокая, но не имеющая отношения к конкретному суду. Если бы в исходной договоренности была такая оговорка, нужды в судебном разбирательстве вообще не возникло бы.
Если под решением данного затруднения понимать ответ на вопрос, должен Еватл уплатить Протагору или нет, то все эти, как и все другие мыслимые решения, являются, конечно, несостоятельными. Они представляют собой не более чем уход от существа спора, являются, так сказать, софистическими уловками и хитростями в безвыходной и неразрешимой ситуации. Ибо ни здравый смысл, ни какие-то общие принципы, касающиеся социальных отношений,
Невозможно выполнить вместе договор в его первоначальной форме и решение суда, каким бы последнее ни было. Для доказательства этого достаточно простых средств логики. С помощью этих же средств можно также показать, что договор, несмотря на его вполне невинный внешний вид, внутренне противоречив. Он требует реализации логически невозможного положения: Еватл должен одновременно и уплатить за обучение, и вместе с тем не платить» (Ивин, 1998, С. 202–204).
Таким образом, в парадоксе мы сталкиваемся с так называемым дистантным противоречием, которое неочевидно в начале рассуждения и поэтому такого рода проблемы часто можно встретить в жизни. Ведь никому и в голову не приходит в самом начале текста, что участники договора могут встретиться в суде! То есть и здесь имеет место самоприменимость!
Явное же противоречие называется контактным и редко встречается в мышлении и языке.
Природа же противоречия «Протагор и Еватл» лежит в том, что с самого начала разрешено рассуждение при абсолютном равенстве двух независимых оснований, одно из которых первоначально скрыто (плата по суду), хотя и является совершенно очевидной возможностью.
И всё-таки приятно, что, в отличие от парадокса «лжеца», в этом случае можно исключить подобные парадоксы в будущем, ничего не меняя ни в судебной практике, ни в языке, ни в мышлении. Достаточно грамотно написать договор.
Миссионер очутился у людоедов и попал как раз к обеду. Дикари разрешают ему выбрать, в каком виде его съедят. Для этого миссионер должен произнести какое-либо высказывание, с условием, что, если оно окажется истинным, его сварят, а если оно окажется ложным, его зажарят. Что следует сказать миссионеру?
Математические парадоксы
Вернёмся к апории «Ахиллес и черепаха», ведь она имеет непосредственное отношение к математике:
«В классическом курсе логики, написанном Вильямом Минто, прославленный бегун легко опережает свою недостойную соперницу, хотя дает ей фору не только в расстоянии – 100 саженей (здесь употреблены старинные русские, а не древнегреческие меры длины, однако это не имеет значения), но и в скорости: он двигается не в полную силу – всего в десять раз резвее черепахи. То есть, по существу, шагает себе не торопясь, уверенный в победе. Правда, добравшись до места, откуда тронулась в путь-дорогу нерасторопная ставленница Зенона, Пелеев сын увидит, что та успела переползти еще на 10 саженей вперед. Пока Ахилл преодолеет эти 10 саженей, черепаха уйдет еще на сажень. Что ж, быстроногому ничего не стоит покрыть какую-то там сажень. А неуклюжая тем временем переместится – пусть на одну десятую сажени, но все-таки вперед, прочь от преследователя! С каждым шагом расстояние сокращается. Таких шагов будет, очевидно, бесчисленное множество. Не беда: современная математика научилась суммировать бесконечные последовательности. И Минто строит бесконечный ряд: 100 + 10 + 1 + 0,1 + 0,01 + 0,001 +… Перед нами убывающая геометрическая прогрессия. Её сумму запросто подсчитает любой теперешний школьник, если, конечно, он уже прошел алгебру по учебнику, кажется, для восьмого класса; эта сумма равна 111 1/9. Проделав нехитрый подсчет, Минто заключает: „Софист хочет доказать, что Ахилл никогда не догонит черепаху, а на самом деле доказывает лишь то, что Ахилл перегоняет её между 111-й и 112-й саженями на их пути“. Вроде бы правильно. Вроде бы логично. Увы, торжествующий опровергатель не ответил посрамленному софисту, ибо вопрос ставился иначе: не когда, а как возможна подобная встреча…» (Бобров, 1966).
Для того чтобы решить фундаментальную задачу, необходимо, как говорится, «докопаться до сути». Именно, «докапывание до сути» и приводит к парадоксам и противоречиям. А затем парадокс или противоречие необходимо разрешить (снять). Так что есть две половинки пути: формулировка противоречия и его разрешение.
Предлагаем ещё один, уже не такой старый парадокс, как в случае с лжецом, – парадокс вероятности.
Парадокс вероятности (обсуждение на семинаре «Междисциплинарные исследования»)