Чтение онлайн

на главную

Жанры

Прокачай мозг методом знатоков «Что? Где? Когда?»
Шрифт:

С. Ёлкин. Если представить мысленный эксперимент с бросанием точки на плоскость, то исходным постулатом является то, что вероятность попасть в какую-либо конкретную точку плоскости равна нулю (невозможное событие). Но при этом вероятность, что точка попадёт на плоскость, равна единице (достоверное событие). То есть, в конце концов, реализуется одно из невозможных событий.

В. Ковалёв. Да, внутри всякой реальности сидит противоречие, которое её как раз и созидает. Найти самое глубокое противоречие для данной реальности – это даже не полдела, а почти всё дело. Потому что решение противоречия содержится в нём самом, и значит, надо просто понаблюдать, как оно разрешает само себя. Противоречие – это соотношение противоположностей, и потому надо увидеть, каковы они в рамках рассматриваемой системы. Это обычно очень трудно, потому, что мешает спутанность отношений, масса привходящих обстоятельств и т. д.

А насчёт парадокса вероятности, то тут, думаю,

не всё так безнадёжно, как кажется. Плоскость по отношению к точкам – это ведь их целое, которое не сводится к ним и не состоит из них. Поэтому не надо их ставить «на одну доску». Попасть абсолютно точно в часть невозможно, а в целое – запросто, потому как оно везде.

С. Ёлкин. Неясно, почему «невозможно абсолютно точно попасть в часть»? Добавлю, так, «про между прочим», что этот парадокс послужил одной из тех причин, по которой великий Давид Гильберт сформулировал проблему создания аксиоматической теории вероятности и включил её в число выдающихся проблем математики на том самом выдающемся конгрессе математиков [33] . Проблема эта была разрешена только более 30 лет спустя другим великим математиком – А. Н. Колмогоровым [34] .

33

Проблемы Гильберта – список из 23 кардинальных проблем математики, представленный Давидом Гильбертом на II Международном Конгрессе математиков в Париже в 1900 году. Конечно, это была не главная причина. Главной причиной было желание сделать теорию вероятности математической дисциплиной, так как в то время она считалась отраслью естествознания.

34

Аксиоматика Колмогорова – общепринятый аксиоматический подход к математическому описанию события и вероятности; предложен Андреем Николаевичем Колмогоровым в 1929 г., окончательно в 1933 г.; придал теории вероятностей стиль, принятый в современной математике.

В. Ковалёв. Во-первых, я никак не могу взять в толк, как можно попасть в то, что не имеет размеров, то есть в точку. Во-вторых, точность – это идеализация, химера нашего ума, а в реальном мире ничто не может абсолютно точно совпасть друг с другом, ничто не может абсолютно заменить другое. В-третьих, не надо путать математику с логикой, а логику формальную (математическую) с диалектической, то есть рассудок с разумом. Математика – предел формализации как таковой, то есть рассудок чистейшей воды, который умеет только разделять, фиксировать и связывать внешней связью эти выделенные им неподвижности. Созданная математикой абстракция точки, то есть дискретности как таковой, у которой единственное свойство – отсутствие свойств, – ярчайший пример голого рассудка. Плоскость же по отношению к точке есть её прямая противоположность, то есть континуум, непрерывность как таковая. Математика – это только фиксация их различия и ничего более. А в чём состоит их тождество, она не знает, это уже вопрос философии, которая на что-нибудь да может-таки сгодиться. Наше сознание в любом процессе познания то проваливается в голую математику, то поднимется на уровень философии, и только так, пульсируя, оно может получить действительное знание.

А. Трушечкин [35] . Общепринятый ответ на этот парадокс – что «невероятное» не означает «невозможное». Невероятное событие – вероятность которого равна нулю, невозможное – которое не может произойти. На это можно возразить: «Как же? Согласно исходным идеям теории вероятностей, если вероятность равна нулю, то событие и есть невозможное!»

Тогда тут, пожалуй, можно разобрать подробнее, как мы делаем вывод о том, что вероятность попадания в точку равно нулю. Здесь речь идёт о геометрической вероятности. Предположим для простоты, что мишень ограниченна: например, это круг единичной площади, и мы стреляем по нему безразмерными пулями. Тогда вероятность попадания в произвольную область этого круга равна площади этой области. Площадь точки равна нулю. Почему? Ответ: по определению (из теории меры) множество имеет площадь ноль, если его можно накрыть множеством сколь угодно малой площади. Для точки можно это сделать. Например, рассмотреть последовательность маленьких кружков с центрами в этой точке и радиусами, стремящимися к нулю. Вероятность попадания в кружок с уменьшением его радиуса уменьшается, но не ноль. То есть множество нулевой площади определяется не непосредственно, а как бы итеративно, путём приближения множествами уменьшающейся площади. Поэтому и утверждение о том, что вероятность попадания в точку равна нулю, можно воспринимать так же: здесь не чистый ноль, а бесконечно малая последовательность чисел. Попасть в точку можно, но вероятность исчезающе мала.

35

А. С. Трушечкин, доцент кафедры № 28 (Системный

анализ) НИЯУ МИФИ.

Таким образом, в этих рассуждениях всплывает на поверхность то, что точка – это идеализация очень маленького множества (конец обсуждения)

Так что, любезный наш читатель, зря старался А. Н. Колмогоров?

ВОПРОС № 14

Парадокс неожиданности. Однажды в воскресенье начальник тюрьмы вызвал преступника, приговорённого к казни, и сообщил ему: «Вас казнят на следующей неделе в полдень. День казни станет для вас сюрпризом, вы узнаете о нём только когда палач в полдень войдёт к вам в камеру». Начальник тюрьмы был честнейшим человеком и никогда не врал. Заключённый подумал над его словами и улыбнулся: «Вы не сможете казнить меня, если хотите выполнить свои обещания!»

Тем не менее, начальник тюрьмы выполнил свои обещания, и узник был казнён неожиданно для него, как и было обещано! Как это возможно?

Парадоксы теории множеств

«Никто не может изгнать нас из рая, созданного нам Кантором!» – заявил Давид Гильберт по поводу теории множеств Георга Кантора. Таково было чувство восторга от новой «игрушки» у математиков того времени. В 1873 году Кантор ввел понятие множества. Первоначально новая теория помогла решить ряд проблем. Однако очень скоро в ней обнаружились противоречия.

Первое противоречие возникло благодаря введению и анализу самого большого множества из всех: множества всех множеств. Простейший вопрос «Существует ли множество всех множеств?» тут же приводит к парадоксу. Для этого надо напомнить, что в теории множеств разрешима процедура включения одного множества в состав другого или «взятие множества от множества». (Это вам ничего не напоминает? Правильно – вездесущую рекурсию!)

Можно включать какие угодно множества в состав одного – их объединяющего, до тех пор пока все множества не исчерпаются. Тогда мы получим сверхмножество, которое включает в себя все остальные множества. Все! Но… не все! Само сверхмножество (множество всех множеств) оказалось не включённым! Ведь его вначале не было, а теперь оно появилось. Ну что же, включим теперь и его. Но тогда появляется новое сверхмножество, которого только что ещё не было. Тогда и его включим, и так до бесконечности! То есть множество всех множеств и существует, и не существует одновременно!

Причиной парадокса является возможность быть множеству элементом самого себя. Можно конечно ограничить эту возможность, но тогда исчезнут многие очень полезные возможности теории множеств. Лучше локализовать проблему, и для этого разделить все множества на два типа, те, которые содержат себя в качестве своего элемента, и те, которые не содержат…

В 1901 году Бертран Рассел в письме коллеге изложил мысль, которая в популярной форме известна как «Парадокс брадобрея»: «В одной военной части был брадобрей. Ему было разрешено под угрозой смертной казни брить только тех военнослужащих, которые не бреются сами. Но вот беда – сам брадобрей тоже был на службе. Мог ли он в таком случае побриться сам?»

Если он себя побреет, то окажется тем, кого ему брить категорически запрещено, а если не побреет, то окажется среди тех, кого брить ему можно!

Словом, в теории множеств выявилось много противоречий [36] , а на их устранение потратили огромное количество усилий. Собственно, как и в случае с математическим анализом, который первоначально был противоречив и только трудами титанов – Коши, Вейерштрасс, Гейне – приведён в образцовое состояние. В условно образцовое… Ибо все противоречия математического анализа были упрятаны в его определения, совмещающие в себе невозможное. Достаточно вспомнить бесконечно малые и бесконечно большие величины, которые «куда-то стремятся, но никогда своего предела не достигают». При этом само стремление к пределу происходит вне времени, что невозможно само по себе – в природе такое не наблюдается.

36

См. например: И. Я Ященко. Парадоксы теории множеств. – М.: Московский центр непрерывного математического образования, 2002.

ВОПРОС № 15

Сколько яблок на рисунке? [37]

Детский парадокс

В математике имеется огромное число парадоксов и противоречий. Никто даже не знает сколько – так велика математика! Кстати, это обстоятельство ничуть не мешает нам её любить!

Тем нашим читателям, у кого подрастают дети, ещё предстоит хлебнуть из-за этой «парадоксальности»:

37

Этот парадокс публикуется впервые, равно как и следующий за ним «детский» парадокс.

Поделиться:
Популярные книги

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Восход. Солнцев. Книга X

Скабер Артемий
10. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга X

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов

Дело Чести

Щукин Иван
5. Жизни Архимага
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Дело Чести

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Совок – 3

Агарев Вадим
3. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
7.92
рейтинг книги
Совок – 3