Проклятые вопросы
Шрифт:
Естественно, что, начав работать с Дэви, Майкл стал химиком. Но его тянуло к физике. Отсутствие систематических знаний математики наложило характерный отпечаток на все исследования Фарадея. Он был смелым и гениальным экспериментатором. Некоторые ограничивают его роль именно великими экспериментальными открытиями. Но он был, пожалуй, ещё более великим провидцем. Стремился и умел находить общность в, казалось, отдалённейших областях науки, в совершенно несхожих явлениях. Он был глубоким теоретиком, способным проникать мысленным взором в самую суть вещей и явлений, и формулировал свои мысли в столь чёткой форме, что и в словесном выражении они не уступали математическим теоремам. Вот что писал по этому поводу
Фарадей пришёл к глубокому убеждению о единстве природы и стремился отыскивать всё новые и новые доказательства этого единства. «…Теперь мы знаем, — писал Фарадей, — что он (магнетизм. — И. Р.) действует на все тела и находится в самой тесной связи с электричеством, теплотой, химическим действием, со светом, кристаллизацией, а через последнюю и с силами сцепления».
Фарадей проделал огромное количество опытов, вскрывающих единство того, что он называл силами, а в современной терминологии является различными формами энергии. Но величайшим открытием Фарадея, величайшим после Ньютона, является его теоретический вывод о существовании полей. Он отождествлял поля с материей, считая, что она проникает через все тела и заполняет всё пространство.
Пространство Ньютона — пассивное вместилище тел и зарядов. Пространство Фарадея — средоточие явлений, источник и передатчик сил, действующих на тела и заряды.
Внимание! Сейчас последует величайший для всей истории изучения и покорения света вывод. Пространство, наполненное силовыми линиями, делает ненужным понятие эфира. Ненужным! Можно представить себе, что свет есть не что иное, как дрожание силовых линий.
«Если допустить такую возможность, — пишет Фарадей, — то можно было бы обойтись без эфира…»
Максвелл поставил перед собой цель — придать идеям Фарадея математическую форму. Максвелл рано пристрастился к математике. Свою первую научную работу он выполнил за год до поступления в университет. В то время ему было лишь пятнадцать лет. Во всём блеске математическое дарование Максвелла проявилось при решении задачи, казавшейся совершенно недоступной обитателям Земли. Речь идёт о загадке колец Сатурна, открытых, как мы знаем, ещё Гюйгенсом. За века, прошедшие с тех пор, высказывалось множество гипотез о природе этих колец. Но никто не мог предложить способа проверки их истинности. И то, что было и до недавнего времени оставалось недоступным для опыта, оказалось решённым на листе бумаги. Максвелл расчётным путем показал, что кольца не сплошные образования — твёрдые или жидкие. Они должны состоять из множества отдельных тел, вращающихся по близким орбитам. В наши дни это подтверждено фотографиями с космических аппаратов, пролетающих вблизи Сатурна. Важное значение для науки имеют и работы Максвелла по кинетической теории газов, но самых ценных результатов он добился, развивая идеи Фарадея.
После долгой и кропотливой работы в период 1860–1875 годов Максвелл создал теорию, в которой электрические и магнитные силы природы объединены в понятие единого электромагнитного поля, включающего видимый свет, невидимые ультрафиолетовые и инфракрасные лучи.
Он свёл всё известное людям об электричестве и магнетизме к удивительно простым уравнениям. Именно они сообщили, что свет — это электромагнитные волны, способные распространяться в пустом пространстве так же легко, как в прозрачных телах. Из уравнений следовало, что эти волны могут существовать сами по себе. Они представляют собой реальность, ранее неведомую людям и внезапно появившуюся перед учёными, как могучий
По признанию одного из крупнейших физиков нашего времени, даже «современные представления не могут служить основой для понимания этих электромагнитных колебаний, которые не сводятся к классическому и наглядному представлению о колебаниях материального тела; висящие в пустоте, если можно так сказать, они выглядят для непосвящённых (а может быть, даже и для физиков) чем-то довольно таинственным». Чего же требовать от современников Максвелла! Несмотря на свои невероятные свойства, эфир прочно утвердился в их умах, ибо люди, сформировавшие свои взгляды под влиянием ньютоновской физики, идеалом которой было сведение всех явлений к механическим, не могли отказаться от эфира как переносчика световых волн. Не могли поверить в самостоятельную сущность света и других, ещё неведомых волн.
Теория Максвелла явилась в науке первым этапом немеханической физики, первым этажом в грандиозной пирамиде всё усложняющихся абстракций. Мы увидим, что трудности, связанные с освоением новых абстракций, возникнут вновь, когда наступит эра теории относительности и квантовой механики.
Уравнения Максвелла содержали в себе не только описание известных явлений, но и предсказали существование новых волн, открытых впоследствии, в том числе радиоволн. Уравнения не содержали лишь одного — в них не было ничего, относящегося к световому эфиру и его поразительным свойствам. Эфир просто остался за бортом теории Максвелла, но это никак не мешало ей уверенно помогать развитию науки. Для некоторых учёных эфир стал просто синонимом пустого пространства.
Через двенадцать лет Герц обнаружил на опыте предсказанные теорией Максвелла электромагнитные волны. Однако традиции механистической физики не были сломлены. Многие физики упорно пытались подвести под теорию Максвелла ходули привычной наглядности. Они объясняли: электромагнитные поля Максвелла — это особые натяжения эфира. Такое объяснение не пугало, ведь свет принимали за поперечные волны в эфире.
Другие, продолжая считать эфир реальностью, предпочитали забывать о его противоречивых свойствах, относя эфир в разряд непознаваемых невесомых субстанций.
XIX век перевалил в свою вторую половину под торжественные звуки фанфар. Здание науки уже красовалось многими башнями и казалось построенным на века.
Рассказывают, что один молодой человек, мечтавший заниматься теоретической физикой, поведал о своей мечте маститому Томсону. И тот отговаривал молодого физика, потому что теоретическая физика, по существу, закончена и в ней нечего делать. Это было в начале XX века.
Но Томсон ошибался, как ошибались многие и до и после него, считая, что достигли предела знаний, не понимая неисчерпаемости природы, безграничности процесса познания.
Наука манит своих слуг чарующим видом сияющих вершин, и они без устали карабкаются по каменистым тропам, стремясь ввысь и пренебрегая устрашающими пропастями. Бывает и так: человек строит башню, чтобы с неё видеть дальше и больше. И другие нетерпеливо помогают ему. А у подножия башни образуется зияющий провал, грозящий поглотить строителей и их гордое творение, если они не сумеют вовремя укрепить фундамент…
Выдающийся немецкий физик Кирхгоф, уже прославившийся тем, что установил законы распространения электричества по проводам, ничем не отличавшиеся от законов, управляющих течением жидкости по трубам, настойчиво изучал оставшиеся ещё не вполне ясными свойства упругих тел. Судьбе было угодно столкнуть его с замечательным химиком Бунзеном, успевшим прославиться изобретением угольно-цинкового гальванического элемента, а затем, с его помощью, он получил металлический магний, литий, кальций и стронций.