Проклятые вопросы
Шрифт:
Для большинства изученных галактик величина Z лежит в пределах от 0,2 до 0,8. Для того чтобы ощутить порядок величин, достаточно указать, что при Z=0,5 расстояние до наблюдаемой галактики таково, что свет тратит на прохождение этого пути 6Ѕ109 лет. Астрономы говорят: расстояние составляет 6 миллиардов световых лет. Чем больше величина Z, тем удалённее галактики. Так как блеск источника убывает вместе с увеличением квадрата расстояния до него, то даже самые крупные телескопы не позволяют увидеть не только свет звезды, но и свет целых галактик при Z, превышающей единицу. Возникало впечатление, что на расстояниях, при которых Z превышает единицу, Вселенная пуста.
Казалось,
После строительства крупных радиотелескопов ситуация в этой области науки внезапно изменилась. В 1960 году были открыты удивительные источники радиоволн. Создавалось впечатление, что огромная излучаемая ими энергия исходит из одной точки. Их назвали квазизвёздными источниками радиоизлучения, сокращённо — квазарами. Астрофизики не могли понять природы этих источников радиоволн. Загадка ещё более сгустилась после того, как наблюдатели убедились в странном совпадении: положение некоторых из квазаров оказалось как бы наложенным на тускло светящиеся звёзды, видимые только в крупнейшие из телескопов. Причём в их спектрах были обнаружены таинственные спектральные линии. Эти спектральные линии не совпадали со спектрами известных химических элементов. Квазары как бы выбывали из общей гармонии в распределении материи.
В 1963 году американский астрофизик М. Шмидт, пытаясь выявить какую-либо закономерность в положении спектральных линий одного из квазаров, обнаружил, что их можно сопоставить с известными спектральными линиями атомов водорода. Но при этом надо допустить, что все они сдвинуты в красную сторону спектра. Причина? В свете хаббловского мировоззрения это может происходить вследствие быстрого удаления квазара от Земли.
Простые вычисления показали, что скорость удаления этого квазара составляет 48 тысяч километров в секунду. Скорость, соответствующая значению Z = 0,158. Это один из близких к нам квазаров.
Правильность предположения подкреплялась тем, что Шмидту удалось отождествить и ряд других линий в спектре этого квазара со спектрами различных химических элементов.
Теперь известно, что квазары излучают электромагнитные волны в широчайшем диапазоне, включающем радиоволны, с одной стороны, и ультрафиолетовые волны — с другой стороны. Более того, аппаратура, установленная на искусственных спутниках Земли, зафиксировала ещё более коротковолновое излучение некоторых квазаров, простирающееся вплоть до диапазона гамма-лучей.
Теория, которая могла бы описать природу квазаров и процессы, обеспечивающие пополнение колоссальных потоков энергии, излучаемой ими в течение длительного времени, ещё не разработана. Известно лишь, что они излучают не меньше энергии, чем миллиарды Солнц, а их размеры не превышают размера Солнечной системы. Неудивительно, что мысли учёных в поисках объяснения обратились к другой космической тайне наших дней, к чёрным дырам. Не может ли быть, что в центре квазара расположена огромная чёрная дыра или даже несколько чёрных дыр? Ведь они обладают огромной массой и пополняют свою энергию, притягивая звёзды из окружающего пространства. Необычно большие гравитационные силы, исходящие из чёрной дыры, разрушают приближающиеся к ней звёзды. При этом возникает интенсивное излучение электромагнитных волн во всём диапазоне: от радиоволн до самого коротковолнового
Конечно, эта гипотеза привлекла к себе пристальное внимание. Она взволновала астрофизиков.
Вскоре были изучены спектры многих квазаров и обнаружена отчётливая закономерность: если отобрать ряд квазаров с одинаковой светимостью, то их количество растёт вместе с ростом Z, то есть вместе с расстоянием до них. Для квазаров с большей светимостью этот рост заметен сильнеё, чем для квазаров с малой светимостью. Но при значении Z порядка 2,1 количество квазаров начинает падать. Самый далёкий из обнаруженных квазаров имеет Z = 4,43. Свет, приходящий к нам от этого квазара, был послан им в чрезвычайно отдалённое время, когда после Большого взрыва прошло «только» 2 миллиарда лет, а диаметр Вселенной составлял лишь 18 процентов современного значения.
Удивительно, что не найдено ни одного квазара, находящегося более далеко, хотя чувствительность современных крупных телескопов, оснащённых электроникой, такова, что при их помощи можно было бы наблюдать квазары с Z = 6.
Это значит, что квазары видны в ограниченном слое мирового пространства: между Z = 0,15 и Z = 4,5. Причём для Z, превосходящих 3, количество их быстро уменьшается.
Причина ещё не установлена. Не исключено, что для объяснения этого факта учёным придётся пойти на крайность, пересмотреть теорию эволюции Вселенной.
Внимательное изучение спектров наиболее удалённых квазаров показало, что в них спектральные линии, отождествлённые Шмидтом, сместились за пределы спектра, видимого глазом, уйдя в область невидимых инфракрасных волн.
Вместо них в видимом участке спектра появились новые широкие спектральные линии. Что это за линии? Какая тайна скрывается за ними? Астрономы обратились за советом к физикам. Вскоре неопознанные линии удалось отождествить с наиболее яркой спектральной линией, наблюдаемой в лабораториях в невидимой глазом ультрафиолетовой части спектра атомов водорода. Она принадлежит к серии спектральных линий, открытых в 1906 году американским физиком Т. Лайманом. Это событие не заметили. Никому и в голову не пришло, что открытие зазвучит во весь голос в конце века.
Теперь пора познакомиться с Лайманом. Теодор Лайман родился в 1874 году в США в городе Бостоне. Ему было двадцать три года, когда он окончил знаменитый Гарвардский университет. Работая в этом же университете, он открыл серию спектральных линий водорода, лежащих в далёкой ультрафиолетовой области спектра. Физики назвали эту серию именем Лаймана. Спектральные линии Лаймана возникают чаще всего в газах при небольших давлениях, когда атомы газа редко сталкиваются друг с другом. Что ж, учёные, работающие в области спектрального анализа, приняли это к сведению.
Изучение спектральных линий началось в 1817 году, когда немецкий физик И. Фраунгофер заметил в спектре Солнца отдельные узкие линии, выглядевшие тёмными на ярком фоне солнечного спектра. В 1834 году англичанин Ф. Тальбот объяснил: «Когда в спектре пламени появляются какие-нибудь определённые линии, они характеризуют металл, содержащийся в пламени». В 1859 году Г. Кирхгоф и Р. Бунзен создали метод спектрального анализа. Он дал науке огромные возможности: судить по спектральным линиям о наличии в исследуемом веществе или объекте определённых химических элементов. Этот метод плодотворно используется и в промышленности, и при лабораторных исследованиях, и при изучении космических объектов.