Чтение онлайн

на главную - закладки

Жанры

Простое начало. Как четыре закона физики формируют живой мир
Шрифт:

Помогут ли наши находки победить холеру? Сомневаюсь. Разумеется, традиционным был бы ответ «да», ведь именно он должен звучать в любых новостях и пресс-релизах; в крайнем случае ответ обязан подводить к мысли, что не за горами победа над любыми болезнями, хоть как-то касающимися открытия. Но в случае с холерой есть препятствие помощнее, чем длинная и непредсказуемая тропинка от фундаментальной лабораторной науки до клинической практики: холеру и без того легко лечить. И главное средство здесь – за исключением самых тяжелых случаев – вода с солями и сахарами. Пугающе высокая смертность от этой болезни в наши дни свидетельствует лишь о плачевном состоянии санитарии и вообще общественного здравоохранения во множестве стран. Зачем же нам тогда изучать у холерного вибриона систему секреции VI типа? Она, конечно же, интересна и сама по себе, но меня больше волнует то, что V. cholerae – лишь один из многих видов бактерий, обладающих таким механизмом. Та же система секреции есть у десятков, а то и сотен видов в вашем пищеварительном тракте, и потому, изучив ее роль в кишечнике, мы могли бы лучше понять, от чего зависит структура вашего микробиома. Научившись манипулировать T6SS у разных бактерий, мы, возможно, проложили бы долгожданный путь к оздоравливающему

перекраиванию кишечного микробиома.

Почти во всем, что мы наблюдали в кишке данио-рерио, проявлялся отчетливый биофизический след: физические аспекты поведения – плавание и навигация, формирование трехмерных колоний или манипуляция кишечными сокращениями – во многом определяли исходы. В другом эксперименте мы обнаружили, что под действием малых доз широко применяемого антибиотика обычно подвижные бактерии удлиняются и спутываются, а склонные к агрегации формируют более крупные кластеры, но в меньшем количестве. Оба сценария ведут к значительному общему сокращению бактериальной популяции, поскольку слишком уж сплоченные микробы выталкиваются усилиями кишечника. Вероятно, так и объясняются загадочные крупные изменения в кишечном микробиоме человека, запускаемые антибиотиком и выявляемые с помощью секвенирования. Но это-то и тревожит больше всего, ведь антибиотики в низких концентрациях – повсеместно распространенный загрязнитель. Этот проект, как и многие другие, мы выполняли вместе с лабораторией Карен Гиймен, а основное бремя экспериментов лежало на аспиранте-физике Брэндоне Шломанне и постдоке-биологе Трэвисе Уайлсе, с готовностью размывавших границы между науками.

Наблюдать за поведением бактерий прекрасно, но управлять ими, должно быть, еще лучше. И снова мы обращаемся к одной из наших красных нитей – к теме регуляторных цепей. В главе 4 мы познакомились с инструментами активации и инактивации отдельных генных цепей (вспомните мышей, меняющих цвет). Вышеупомянутый Трэвис Уайлс внедрил подобные переключатели в геном аборигенной кишечной бактерии данио-рерио и взял в свои руки контроль над ее плаванием и химической чувствительностью. Чтобы перемещаться в жидкости, эти бактерии вращают торчащим из одного конца клетки «хвостиком» – жгутиком наподобие штопора. Жгутик и его мотор строятся самосборкой множества разных белков, включая пару PomA и PomB в составе статора мотора (отмечены черным на рисунке основания жгутика). Без PomA и PomB нить жгутика формируется нормально, а вот мотор не создает крутящего момента, который вращал бы жгутик и за счет этого двигал клетку. Следовательно, переключатель, который под влиянием химического сигнала извне выключает гены pomA и pomB в бактерии, обычно экспрессирующей их, либо включает эти гены в бактерии, обычно их не задействующей, позволяет нам решать, будут ли модифицированные микробы плавать в кишечнике. (В нашем случае внешний сигнал должен быть постоянным, сродни кнопке, на которую надо непрерывно давить, чтобы свет не погас. Получается, положения этого переключателя не записываются в память – инженер назвал бы его переключателем мгновенного действия.)

Переключатель позволяет нам узнать больше, чем варианты с простым удалением или постоянной активацией генов. Так, если мы вырежем у бактерий гены, причастные к подвижности, и не найдем этих бактерий в кишечнике, то будем вынуждены выяснять: плавание – это способ удерживаться в кишечнике или прежде всего способ добираться до рыбы и колонизировать ее? Отключение тех или иных моделей поведения после колонизации позволяет нам обозначить роли изучаемых бактерий в специфических сценариях кишечной жизни. Отключение подвижности, как мы обнаружили, приводит к значительному сокращению популяции модифицированных микробов, поскольку они не в силах противостоять кишечным течениям, выносящим их из рыбы, и не могут размножаться так быстро, чтобы восполнять потери. Еще удивительнее, что само животное чувствует эти поведенческие нюансы. У данио-рерио, запрограммированных на производство зеленого флуоресцентного белка при каждой активации сети генов иммунитета, мы наблюдали мощный иммунный ответ на колонизацию рыбы нормальными, подвижными бактериями (как нам и подсказывали прежние наблюдения) и очень слабый ответ на заселение бактериями, неспособными плавать14. Разницу нельзя было объяснить связью иммунных клеток с поверхностными белками микробов, так как внешний вид бактерий не менялся. Мы заподозрили, что критична именно подвижность, поскольку она позволяет бактериям подбираться ближе к стенкам кишечника и контактировать с чувствительными клетками. Это еще нужно доказать, но в любом случае мы полагаем, что в смысле управления экосистемой поведение бактерий в кишечнике играет не меньшую роль, чем поведение животных в лесу.

Потенциал инженерии генетических схем волнует не только нас. Многие ученые уже поняли, что микробы могут «запоминать» условия в кишечнике и после прохождения по нему своим состоянием показывать, встречались ли у них на пути определенные токсины, питательные вещества и другие химические соединения15. В составе одной схемы с генными цепями, производящими особые биохимические агенты, генетические переключатели могли бы обеспечивать доставку лекарств только при должной стимуляции, используя способность клеток к принятию решений для замены традиционных таблеток более продвинутым лечением.

Но вернемся к изучению микробиома с точки зрения физики: влияние биофизических факторов на динамику популяций кишечных микроорганизмов выявляют и другие научные группы. Например, в лаборатории Теренса Хва на кафедре физики Калифорнийского университета в Сан-Диего сконструировали искусственные устройства, воспроизводящие перистальтику человеческого кишечника, чтобы оценить естественные соотношения численности типичных резидентных бактерий16. Ким Хён Чон из Техасского университета в Остине [42] создает растяжимые устройства «кишечник на чипе», подобные платформе «легкое на чипе» (см. главу 8), для исследования механики взаимодействий микробов с культивируемыми клетками кишечника17. Разные научные группы изучают в числе прочего связывание бактерий друг с другом с помощью антител или механические роли тканевого и осмотического стрессов. Но я должен подчеркнуть, что биохимические и генетические характеристики кишечных микробов изучают гораздо чаще, чем физические, и такие исследования особенно хороши для открытия способов общения микробов друг с другом и со своим хозяином. Бактерии могут синтезировать необычные белки, жиры, гормоны, витамины и даже нейромедиаторы. Несомненно, в кишечном микробиоме одновременно действуют биологические, химические и физические принципы.

42

Летом 2022 года команда Кима – лаборатория биомиметической микроинженерии (BioME Lab) – перебралась в Кливлендскую клинику (Исследовательский институт Лернера).

Самособранная экосистема

Динамику, порождаемую взаимодействием бактериальной архитектуры и кишечной механики, мы можем считать очередным проявлением знакомого нам принципа самосборки. В микробных сообществах возможны более необычные и абстрактные способы самосборки, связанные с общими свойствами экосистем. Как я упоминал, в вашем кишечнике живут представители сотен микробных видов. Изобилие таксонов находят и в ведре морской воды или в ложке земли. Такое многообразие сбивает с толку. Вообще-то это известная загадка экологии, в 1961 году названная зоологом Джорджем Хатчинсоном парадоксом планктона. Представьте себе какую-то абстрактную группу видов, которой доступен единственный тип пищи. Всегда найдется один вид, лучше прочих усваивающий эту пищу и размножающийся; постепенно по численности он превзойдет остальных, и разрыв будет только расти. В конце концов этот вид добьется полного доминирования в среде, превратив ее из многообразной в монокультурную. Если доступно несколько типов пищи, длительно сосуществовать смогут несколько видов. Высокое же таксономическое разнообразие, по идее, возможно лишь в тех экосистемах, где пища невероятно разнообразна и точно соответствует предпочтениям каждого из видов.

Природа, однако, в грош не ставит этот аргумент и вопреки теории постоянно создает и поддерживает какофоническое многообразие. Впрочем, даже теория предлагает множество решений парадокса планктона. Одно из них – пространственная структура: если разные организмы населяют разные зоны, они могут сосуществовать, даже имея одинаковые пищевые предпочтения. Второе – временнaя структура: например, численность популяций может колебаться не синхронно, и тогда виды будут доминировать попеременно. Другие решения связаны с метаболизмом. В простейшей картине, которую мы нарисовали, организм лишь поглощал пищу и размножался. В реальности не обойтись без множества промежуточных шагов. После поглощения одни молекулы преобразуются в другие, расщепляются на элементарные звенья или объединяются. Бактерии, в частности, особенно склонны выделять промежуточные продукты метаболизма в среду или поглощать их из нее. В итоге получается гораздо больше типов молекулярной пищи, чем могло бы показаться при учете лишь начальной или конечной точки. Микробы кормят друг друга в ходе таких химических переговоров. Поэтому бульона с единственным питательным веществом хватает для поддержания жизни десятков бактериальных видов. Несколько лет назад группа Альваро Санчеса в Йельском университете выделила из образцов почвы и листвы сотни микробных сообществ, кормила каждое из них всего одним веществом и показала, что несколько видов могут длительно уживаться друг с другом, причем итоговые составы ансамблей предсказуемы и воспроизводимы18.

Наши теоретические представления об экологическом разнообразии тоже углубляются, и мы все лучше понимаем, почему подобное сосуществование распространено гораздо шире, чем казалось ранее. Математическими уравнениями можно описать рост, смерть и взаимодействия видов в экосистеме. Вместо того чтобы присваивать параметрам таких моделей конкретные значения, можно изучить диапазон исходов, получаемых при многократной подстановке случайных величин, и составить представление о том, какие свойства с большей или меньшей вероятностью будут присущи экосистеме. И снова мы сталкиваемся с предсказуемой случайностью: вместо того чтобы оценивать средние характеристики случайных блуждающих, мы оцениваем усредненные характеристики моделей случайных экосистем, определяя, например, частоту исходов, в которых остаются все виды или в которых часть видов вымирает. Пионером в применении этой тактики стал эколог Роберт Мэй: в 1970-х он опубликовал очень важную, ставшую классической статью, где заключал, что разнообразие и стабильность в экосистемах не идут рука об руку19. Напротив, добавление очередного члена в сообщество снижает вероятность устойчивого сосуществования видов. Эту мысль развивают многие теоретики. В Бостонском университете, например, Панкадж Мехта с коллегами показал, что сосуществование возможно и по достижении теоретически выведенной Мэем точки дестабилизации, но только если речь идет об отдельных группах взаимодействующих видов, а не о совокупности их всех20.

Другие теоретические подходы прочерчивают более четкую связь между потреблением питательных веществ и колебаниями численности популяции. Модели, часто объединяемые под названием «потребитель – ресурс», восходят к классическим работам 1960–1970-х, проведенным Робертом Макартуром и другими экологами. Эти модели, в свою очередь, легли в основу того же парадокса планктона. Как мы теперь понимаем, решения этого парадокса могут поступать из разных источников. Чтобы виды со сходными пищевыми предпочтениями могли ужиться вместе, порой достаточно даже не прибегать к обмену метаболитами, а просто ограничить потребление тех или иных веществ. Представьте, что вы можете питаться картофелем, морковью и горохом, но общее количество пищи определяется размером вашей тарелки. Это значит, что увеличение порции картофеля неизбежно компенсируется уменьшением порций моркови и гороха: им на тарелке достанется меньше места. В контексте метаболизма овощи символизируют пищеварительные ферменты, рассчитанные на разные питательные вещества, а тарелка – скорость, с которой организм может вырабатывать ферменты. Нед Уингрин и его коллеги из Принстонского университета обнаружили, что в математическом описании такого ограниченного потребления ресурсов на удивление велик набор параметров, допускающих сосуществование видов, и объясняется это главным образом тем, что есть множество способов умеренного потребления нескольких типов пищи, по общему получению питательных веществ эквивалентных ненасытному поглощению одного-единственного типа21.

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Приручитель женщин-монстров. Том 6

Дорничев Дмитрий
6. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 6

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Тринадцатый IV

NikL
4. Видящий смерть
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Тринадцатый IV

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Хозяйка лавандовой долины

Скор Элен
2. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Хозяйка лавандовой долины

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар