Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства
Шрифт:
Пусть новой теории Бора и сужден был провал, у нее все-таки имелось одно счастливое свойство: она заставила юного Гейзенберга хорошенько задуматься над следствиями исходной теории Бора. Постепенно его размышления начали двигать его к радикальному новому взгляду на физику: быть может, имеет смысл или даже необходимо отставить представление о физической картинке внутреннего устройства атома – об орбитальном движении электронов, к примеру, которое мы в силах вообразить, но на практике наблюдать не можем.
Теория Бора, как и теории классической физики, основывалась на математических значениях, приписанных свойствам вроде положения на орбите и скорости движения по ней электрона. В мире предметов –
Можно ли, спрашивал себя Гейзенберг, развить теорию, основанную только на данных об атоме, которые подлежат прямому измерению, например, на частотах и амплитудах излучения, испускаемого атомом?
Резерфорд противился Боровской модели атома, потому что Бор не предложил никакого механизма, как электрон переходит с одного энергетического уровня в атоме на другой; Гейзенберг разобрался с этим замечанием, не измыслив такой механизм, а объявив, что механизма нет, нет никакого пути, когда речь заходит об электронах, или во всяком случае сам вопрос – за пределами физики, потому что физики меряют поглощенный или испущенный свет в таких процессах, но не могут сами эти процессы наблюдать. К возвращению в Гёттинген весной 1925 года лектором в институте Борна Гейзенберг обрел мечту, цель – разработать новый подход к физике, основанный исключительно на измеряемых данных.
Создать радикально новую науку, которая откажется от интуитивного описания действительности, данного Ньютоном, и отречется от его базовых понятий вроде положения в пространстве и скорости, кои мы все можем себе представить и понять, – устремление бесшабашное для кого угодно, не говоря уже о двадцатитрехлетнем Гейзенберге. Но, как Александр Великий, изменивший политическую карту мира в свои двадцать два, молодой Гейзенберг возглавит поход, который перелицевал научную карту мира.
Теория, созданная Гейзенбергом по вдохновению, займет место Ньютоновых законов движения как фундаментальная теория природы. Макс Борн назовет ее «квантовой механикой» [384] , чтобы отличать от законов Ньютона, которые часто называют ньютоновской, или классической, механикой. Но теории физики обретают вес благодаря своей предсказательной силе и точности, а не по общему согласию или вкусам, и потому интересно, как теория, основанная на такой причудливой мысли, как Гейзенбергова, смогла «заместить» столь основательную теорию, достигшую стольких успехов, как Ньютонова.
384
William A. Fedak, Jeffrey J. Prentis, «The 1925 Born and Jordan Paper “On Quantum Mechanics», American Journal of Physics, 77 (февраль, 2009), стр. 128–139.
Вот ответ: хотя понятийный аппарат квантовой механики сильно отличается от ньютоновского, математические прогнозы этих теорий обычно различаются лишь для систем масштабов атома или мельче, где законы Ньютона перестают действовать. И потому, полностью окрепнув, квантовая механика объяснила странное поведение атома, не противореча устойчивым описаниям повседневных
Как Гейзенбергу удалось создать крепкую теорию из того, что в те времена было, считай, философскими предпочтениями? Он поставил себе задачу перевести представление о физике, основанной на «наблюдаемом», то есть на измеримых количествах, в математический аппарат, который, как и Ньютонов, можно применять для описания физического мира. Разрабатываемая им теория должна была быть применима к любой физической системе, но он развивал ее в контексте мира атома и с начальной целью объяснить путем общей математической теории причины успеха Боровской частной модели.
Гейзенберг первым делом взялся определять наблюдаемые величины, подходящие для атома. Поскольку в атомном мире мы измеряем частоту света, испускаемого атомом, а также амплитуду – или интенсивность – спектральных линий, именно эти свойства Гейзенберг и выбрал. Затем он применил методы традиционной математической физики, чтобы вывести связь между классическими ньютоновскими наблюдаемыми величинами – положением в пространстве и скоростью – и спектральными данными. Он задался целью заместить с помощью этой выявленной взаимосвязи все величины, наблюдаемые в Ньютоновой физике, квантовым эквивалентом. Как выяснится, этот шаг требовал и творческого подхода, и смелости, потому что Гейзенбергу нужно было превратить положение в пространстве и импульс в математические сущности, оказавшиеся и новыми, и диковинными.
Новый тип переменных потребовался потому, что положение тела в пространстве, допустим, определяется указанием одной отдельной точки, спектральные данные же требуют другого описания. Каждое из многочисленных свойств света, испускаемого атомом, – цвет, яркость – описывается не одним числом, а целым набором чисел. Данные образуют матричную систему, потому что существует спектральная линия, соответствующая переходу из одного исходного состояния атома в любое конечное, и получается значение энергии для каждой пары Боровских энергетических уровней. Если это все кажется сложным, не переживайте – это на самом деле сложно. Когда Гейзенберг придумал эту систему, он сам назвал ее «очень странной» [385] . Но вот суть того, что он сделал: он удалил из теории электронные орбиты, которые можно себе вообразить, и заменил их чисто математическими абстракциями.
385
Niels Blaedel, Harmony and Unity: The Life of Niels Bohr (New York: Springer Verlag, 1988), стр. 111.
Работавшие с теориями атома до Гейзенберга стремились, как и Резерфорд, обнаружить механизм процессов внутри атома. Они мыслили недоступное наблюдению содержимое атома как существующее в действительности и пытались вывести природу наблюдаемых спектральных линий, основываясь на догадках о поведении содержимого атома – например, движущихся по орбите электронов. Их рассуждения всегда предполагали, что составляющие атома имеют те же ключевые характеристики, что и предметы, к которым мы привыкли в повседневности. И лишь Гейзенберг мыслил иначе, и ему хватило пороху смело объявить, что орбиты электронов – за пределами наблюдения, а значит – не реальны, и им нет места в теории атома. Таков был подход Гейзенберга не только к атому, но и к любой физической системе.