Психология критического мышления
Шрифт:
Многие из статистических данных, на которые мы по привычке ссылаемся, удручающе неправильны. Бозелл (Bozell, 1993) усомнился в точности сведений, которые мы получаем из средств массовой информации. Например, он цитирует репортера CBS, который предупреждал, что заболеваемость СПИДом среди гетеросексуалов только в 1992 г. увеличилась на 30 %. Но по данным Центра контроля над заболеваемостью, количество заболевших СПИДом среди гетеросексуалов в 1992 г. увеличилось на 17 %, что является снижением скорости роста заболеваемости по сравнению с ростом на 21 % в 1991 г. Точно так же Бозелл цитирует ведущего программы новостей NBC, который сообщил, что в настоящее время в США 5 миллионов бездомных, хотя
Во-первых, стоит выработать привычку подвергать сомнениям статистические данные, которые вам сообщают. Как они были собраны и кто их собирал? Например, трудно точно подсчитать количество бездомных — их нелегко отыскать, поскольку у них нет адресов и телефонов. Как были получены две различные оценки этого количества? Какая выборка использовалась — из центра Нью-Йорка или из Солт-Лэйк-Сити? Есть ли у вас причины считать, что данные преднамеренно искажены? Например, консервативная политическая группа «Женщины, волнующиеся за Америку» с очевидными целями поместила в общенациональных газетах призыв к запрещению мужского и женского гомосексуализма в армии. В поддержку своей позиции они цитировали научное исследование, обнаружившее, что «гомосексуальное поведение приводит к половой распущенности, связано с принуждением и не поддается контролю» (цит. по: Bozell, 1993, р. А18). Далее шло утверждение что «типичный гомосексуалист» каждый год имеет минимум 68 половых партнеров! Вы заинтересовались, где и как были получены подобные статистические данные? Надеюсь, что заинтересовались. Это «научное исследование» проводилось более 10 лет назад и специально было нацелено на изучение наиболее активных и неразборчивых в связях гомосексуалистов-мужчин, поэтому его результаты нельзя обобщать на всех гомосексуалистов. Если вы будете подвергать сомнению статистические данные, с которыми постоянно встречаетесь в жизни, у вас будет меньше шансов быть введенными в заблуждение искаженными данными.
Применение алгоритма
Рассмотрим этапы применения общей схемы мышления при осмыслении и использовании вероятностей.
1. Какова цель? Всякий раз, когда вы принимаете решения, касающиеся неопределенных событий, вам необходимо применять навыки, описанные в этой главе. Это особенно необходимо, когда вам сообщают вероятностные значения или когда подразумевается степень уверенности в чем-либо. Такие ситуации возникают при решении большинства проблем и принятии многих решений, потому что они часто относятся к событиям в будущем, о которых никогда нельзя судить с полной определенностью.
2. Что известно? При постановке задачи вам необходимо знать, как получены сообщаемые вам значения вероятностей — объективно или субъективно. Вам необходимо проверить, не могут ли эти значения оказаться тенденциозными. Не повлиял ли на значение вероятности, приписываемое данному исходу, тот факт, что данный исход желателен? Хотя тема учета степени надежности источников информации обсуждалась в главе 5, она касается и данного контекста. Перед тем как использовать значения вероятностей, вам надо оценить качество имеющейся у вас информации. Поскольку значения вероятностей часто используются для убеждения людей, необходимо проверить, соответствуют ли представленные числовые данные предлагаемой вам аргументации.
При выяснении того, что вам известно, ищите информацию, которую можно использовать для расчета вероятностных оценок. Например, если вам дана вероятность риска, то как она рассчитана — за год, за одно воздействие (например, рентгеновское облучение) или за всю жизнь? Имеется ли дополнительная информация, которую можно использовать в комбинации с базовыми уровнями, чтобы уточнить ваши прогнозы?
3. Какие навыки мышления позволят вам достичь поставленной цели? Для работы с вероятностными событиями было предложено большое количество методов мышления. Один из самых полезных — изображение полной древовидной диаграммы с указанием вероятностей для каждой ветви. Этот метод позволяет вам «увидеть» и объективно рассчитать вероятность различных исходов. Когда вы используете дополнительную информацию в сочетании с информацией о базовом уровне, важно правильно сформировать их отношения, чтобы обойти проблему игнорирования базового уровня. Требуется также умение узнавать типичные и часто встречающиеся ошибки (например, ошибка конъюнкции, неумение учитывать совокупные риски) и использовать правила «и» и «или» для повышения точности вероятностных решений.
Поскольку в жизни очень немногое известно с полной определенностью, методы осмысления и использования вероятностей приходится применять часто. После прочтения этой главы вы должны уметь:
• Рассчитывать ожидаемые значения в ситуациях с известными вероятностями.
• Узнавать случаи регрессии к среднему значению и вносить поправки в свои прогнозы с учетом этого явления.
• Использовать правило «и», избегая при этом ошибок конъюнкции.
• Использовать правило «или» для расчета совокупных вероятностей.
• Узнавать «ошибки игрока» и избегать их.
• При составлении прогнозов использовать базовые уровни.
• Использовать древовидные диаграммы для принятия решений в вероятностных ситуациях.
• Вносить поправки в оценки рисков с учетом совокупного характера вероятностных событий.
• Понимать сущность различий между средним арифметическим и срединным значениями (медианой).
• Избегать проявления чрезмерной уверенности в неопределенных ситуациях.
• Понимать ограничения, накладываемые на применение экстраполяции
• Использовать вероятностные суждения для совершенствования принятия решений.
• При оценке неизвестных рисков учитывать такие показатели, как исторические данные, степени риска, связанного с отдельными компонентами решения, и аналогии.
4. Достигнута ли поставленная цель? Вероятности учитываются для того, чтобы количественно оценить и снизить степень неопределенности. Вы достигнете своей цели, когда сможете приписать случайным событиям более точные значения вероятностей.
Краткий итог главы
1. Поскольку очень немногое в жизни известно наверняка, законы вероятностей играют решающую роль во многих аспектах нашей жизни
2. Согласно определению, вероятность — это отношение количества способов, которыми может произойти определенное событие (которое мы называем успехом), к общему числу возможных исходов (когда все возможные исходы равноправны). Этим термином также пользуются для выражения степени уверенности в появлении событий с неизвестной или известной из прошлого частотностью появления.
3. Обычно люди склонны испытывать по поводу неопределенных событий большую уверенность, чем позволяет объективная вероятность этих событий.
4. Существует несколько способов представления вероятностной информации, эквивалентных с точки зрения математики, но вызывающих резкие различия в человеческой интерпретации этой информации.
5. Для расчета вероятностей многократного появления события (например, при двух или более бросках монеты) можно использовать древовидные диаграммы. Если события независимы, то вероятность любого сочетания исходов можно найти путем перемножения значений вероятностей вдоль ветвей дерева.