Психология критического мышления
Шрифт:
2. Риск, связанный с новыми технологиями, для которых еще нет исторических данных, можно рассчитать путем расчета риска, связанного с отдельными компонентами этих технологий (в случае, если они независимы друг от друга), и перемножения полученных значений вдоль ветвей дерева решения. Такой метод расчета вероятностей был описан выше в одном из разделов этой главы. В качестве примера можно привести расчет вероятности серьезной аварии на химическом заводе.
3. Риск можно рассчитать по аналогии. (Использование аналогий в качестве вспомогательного средства при решении задач более подробно обсуждается в двух следующих главах.) При испытаниях лекарств на животных экспериментатор фактически пользуется аналогией и экстраполирует полученные результаты на людей.
Необъективность
Психологи и другие ученые, исследующие то, каким образом люди определяют степень рискованности различных ситуаций, знают, что при оценке «туманной смеси догадок» (Paulos, 1994, р. 34), на которых строится информация, нуждающаяся в нашей интерпретации, большинство из нас становится жертвой распространенных предубеждений. Вот некоторые из них (Wandersman & Hallman, 1993):
1. Когда люди рискуют добровольно, то они воспринимают риск менее серьезно по сравнению со случаями вынужденного риска. Например, многие считают, что косметические операции безопаснее, чем операции, от которых мы не можем отказаться. В конце концов, пациенты добровольно идут на косметическую операцию, поэтому им приходится убеждать себя, что эта операция «достаточно безопасна».
2. Естественные риски считаются менее опасными, чем искусственные. Например, многие люди считают, что природные токсины, имеющиеся в нашей пище, менее опасны, чем попавшие в нее пестициды или добавление консервантов.
3. Запоминающиеся события, в которых пострадало одновременно большое количество людей, воспринимаются как более рискованные по сравнению с обыденными и менее яркими событиями. Примером этого эффекта является большое количество людей, которые боятся попасть в авиакатастрофу, но почти не думают о безопасности при поездках на автомобиле.
4. События, которые люди считают подконтрольными человеку, воспринимаются как более безопасные по сравнению с теми событиями, которыми нельзя управлять. Многие люди склонны чувствовать себя в большей безопасности, сидя за рулем, а не в качестве пассажира, поскольку большинство из нас считает себя водителями выше среднего уровня.
5. Явления, которые невозможно наблюдать и которые связаны с эффектными и пугающими последствиями (генная инженерия, радиоактивные отходы, СПИД и ядерные реакторы), считаются более рискованными, чем явления, связанные с известной степенью риска или менее пугающими последствиями (курение, автокатастрофы, динамит и пистолеты; Slovic, 1987).
Очевидно, что личное восприятие риска отличается от его научной оценки. Эксперты по оценке риска судят о риске на основе данных о ежегодной смертности; события, вызывающие наибольшее количество смертей, расцениваются как самые рискованные. Например, эксперты сочли автотранспорт источником большего риска, чем использование ядерной энергии (поскольку в автокатастрофах погибает больше людей), в то время как выборки, составленные из студентов колледжей и членов Лиги женщин-избирателей, посчитали ядерную энергию источником большего риска (так как катастрофы, связанные с ее использованием, могут иметь ужасающие воображение последствия).
Главная трудность при интерпретации маловероятных рисков, таких как наводнения или ядерные аварии, состоит в том, что статистические данные о них трудны для осмысления. Трудно соотнести с собственной жизнью тот факт, что конкретное связанное с риском событие случается с одним из 10 000 человек. Нам необходимо так переформулировать эту информацию, чтобы она отвечала на вопрос: «Насколько вероятно, что это случится со мной?» Один из предлагаемых способов осмысления такого рода информации состоит в том, чтобы перевести все подобные риски в стандартные единицы «риска в час» (Slovic, Fischoff, Lichtenstein, 1986). Предположим, например, вы узнаете, что риск, связанный с поездкой на мотоцикле, равен риску, который связан с пребыванием в 75-летнем возрасте в течение одного часа. Поможет ли подобная информация осмысленно интерпретировать риск, связанный с поездкой на мотоцикле? Хотя она может принести пользу при оценке сравнительного риска (поездка на мотоцикле по сравнению с полетом на дельтаплане), сама по себе такая информация бесполезна, поскольку понять, что подразумевается под риском пребывания в 75-летнем возрасте в течение одного часа, все равно трудно.
В качестве избирателей и потребителей мы постоянно сталкиваемся с необходимостью принятия решений по огромному количеству самых разных проблем, включающих в себя использование ядерной энергии, радиационное заражение пищевых продуктов, хирургические операции, качество воды и воздуха, применение лекарств. Для принятия обоснованного решения всегда необходимо тщательное рассмотрение информации, касающейся оценки риска, связанного с данным решением (например, исторические данные, аналогичные риски и риски, связанные с отдельными компонентами), а также понимание факторов, приводящих к тенденциозности при субъективной оценке риска.
Ниже приводятся ответы на заданные выше вопросы о вероятностях причин смерти, сопровождающиеся действительными частотностями каждой причины (количество смертей на 100 000 000 человек). Проверьте свои ответы и выясните, не сделали ли вы общих ошибок, переоценив события, которые касаются большого количества людей одновременно и лучше запоминаются (такие, как авиакатастрофы), и недооценив те риски, которые мы считаем управляемыми (такие, как вождение автомобиля).
Использование статистики и возможные ошибки, возникающие при этом
Существует три вида лжи: просто ложь, гнусная ложь и статистика.
Дизраэли (1804–1881)
Когда мы хотим узнать что-нибудь о группе людей, часто бывает невозможно или неудобно спрашивать об этом всех членов группы. Предположим, что вы хотите выяснить, действительно ли доноры, сдающие кровь для Красного Креста, как правило, добрые и благородные люди. Поскольку вы не можете обследовать всех, кто сдает кровь, чтобы определить, насколько они добры и заботливы, вы обследуете только часть этого контингента, которая называется выборкой. Количественные показатели, рассчитанные на выборке людей, называется статистическими данными. (Статистикой также называется область математики, которая использует теорию вероятностей для принятия решений о контингентах.) Статистические данные встречаются в любой сфере жизни — от средних результатов игроков в бейсбол до величины военных потерь. Многие люди вполне справедливо относятся к статистике подозрительно. Хафф (Huff, 1954) написал небольшую книжечку, в которой приводятся юмористические примеры статистических ошибок. Книга носит название «Как лгать с помощью статистики» (How to Lie With Statistics). В этой книге есть такая зарифмованная мысль: «Статистика умело грим наложит — немного пудры и немного краски — и факты на себя уж не похожи. Я отношусь к статистике с опаской» (р. 9).
О среднем
Если сказать, что в средней американской семье 2,1 ребенка, то что это будет означать? Это число было получено путем создания выборки из американских семей, подсчета общего количества детей в этих семьях и деления на количество семей в выборке. Это число может дать весьма точное представление о том, что в американских семьях примерно по два ребенка — в некоторых больше, а в некоторых меньше, а может и ввести нас в заблуждение. Возможно, что в половине семей совсем не было детей, а в другой половине было по четыре ребенка или даже больше, а читатель будет ошибочно считать, что в большинстве семей «примерно» два ребенка, в то время как на самом деле нет ни одной такой семьи. Эта ситуация напоминает человека, который держит голову в духовке, а ноги в холодильнике и говорит, что в среднем он чувствует себя вполне комфортно. Не исключено также, что выборка, использованная для получения этого статистического показателя, не репрезентативна для контингента — в данном случае для всех американских семей. Если выборка состояла из студентов колледжей или жителей Манхэттена, то полученный результат завышен. С другой стороны, если в выборку вошли жители сельских районов, то полученный результат занижен. Если выборки не отражают особенности контингента, то их называют нерепрезентативными выборками. Статистические данные, рассчитанные на таких выборках, не дают точной информации о контингенте.