Психология критического мышления
Шрифт:
Рис. 9.13. Стратегия решения с конца удобна, когда из конечной точки ведет меньше путей, чем из исходного положения.
Упрощение
Вы все обдумываете и обдумываете свою задачу; попробуйте упростить ее… Довели ли вы ее до максимально возможного упрощения, до той ясности, которая наталкивает на мысли?
Полья (Роlуа, 1962)
Задачи, вызывающие затруднения при решении чаще всего сложны по структуре. Хороший способ справиться с такой задачей — это упростить ее настолько, насколько возможно. Нередко
Предположим, вы столкнулись с классической задачей «кошка на дереве». Согласно устоявшемуся мнению, кошки могут карабкаться вверх по деревьям, но не могут спускаться. (На самом деле в этом утверждении не больше правды, чем в том, что слоны боятся мышей.) Предположим, вам надо снять кошку с ветки, расположенной на высоте 10 футов. В вашем распоряжении имеется единственная лестница длиной 6 футов. Для того чтобы лестница была надежно установлена, ее основание должно находиться на расстоянии трех футов от ствола. Дотянетесь ли вы до кошки?
Лучший путь к решению этой (и не только этой) задачи — графически изобразить исходные данные. Условия задачи графически показаны на рис. 9.14. Как только информация представлена в виде чертежа, ее можно воспринимать как простую геометрическую задачу: найти гипотенузу прямоугольного треугольника, если его катеты равны 10 и 3 футам. Такая формулировка задачи предполагает, что вы воспользуетесь своими знаниями о том, как вычисляются длины сторон треугольников. Факт остается фактом: когда для решения задачи требуется определенный уровень образования — его ничем не заменишь.
Рис. 9.14. Задача «кошка на дереве».
Если исходные данные представить в виде рисунка, задача превращается в простую геометрическую задачу.
Формула для нахождения гипотенузы треугольника имеет вид:
а2 + Ь2 = с2.
Подставляя соответствующие значения в это уравнение, получим:
102 + 32 = с2
100 + 9 = с2
109 = с2
109 = c
с= 10,4
Таким образом, для того чтобы достать до ветки, нужна лестница длиной 10,4 фута. Но постойте, может, попробовать перерисовать задачу, используя условие, что для спасения кошки в вашем распоряжении имеется только шестифутовая лестница? На рис. 9.15 приведена несколько другая графическая интерпретация этой задачи.
Может быть использована та же формула, но теперь неизвестной величиной является не гипотенуза, а один из катетов прямоугольного треугольника.
Рис. 9.15. Задачу «кошка на дереве» можно переформулировать таким образом: как высоко от земли располагается конец лестницы в 6 футов, если ее основание отставить на 3 фута от ствола?
Тогда и ответ получится другой.
Изменяя формулу, получим:
а2 + Ь2 = с2
а2 = с2-Ь2
а2 = 62-32
а2 = 36-9
а2 = 27
a = 27
a = 5,2
Таким образом, верхняя планка лестницы коснется ствола дерева на высоте 5,2 фута над землей. Сможете ли вы достать кошку? Нарисуйте себя на верхней ступеньке. Если вы выше 5 футов, то без труда дотянетесь до кошки, стоя на последней или даже предпоследней ступеньке. На самом деле вам даже не придется тянуться.
Упрощение является хорошей стратегией для решения абстрактных задач, сложных или содержащих информацию, не относящуюся к поиску решения. Часто стратегия упрощения работает рука об руку с выбором оптимальной формы представления задачи, поскольку именно удачное наглядное представление может существенно упростить задачу.
Обобщение и специализация
Иногда, столкнувшись с задачей, оказывается полезно рассмотреть ее как частный случай целого класса аналогичных задач (обобщение); или, наоборот, как специальный случай (специализация).
Чаще всего стратегии обобщения и специализации уместны при представлении задачи в форме древовидной диаграммы. Большинство целей в этом случае может одновременно классифицироваться как подчиненные для вышестоящей категории и главные для нижестоящей. Рассмотрим пример, проясняющий сказанное. Предположим, что перед вами как дизайнером мебели стоит задача разработки проекта специального удобного стула для чтения. Что бы вы предприняли для решения этой задачи?
Как вы уже, по-видимому, поняли — это пример нечетко поставленной задачи. Самая большая сложность состоит в том, чтобы выбрать: какой из нескольких возможных вариантов стульев наиболее подходит поставленной цели? Воспользуйтесь древовидной диаграммой, чтобы классифицировать стулья вообще и стулья для чтения в частности. Таких диаграмм можно построить множество; один из возможных вариантов приведен на рис. 9.16.
Рис. 9.16. Одна из возможных древовидных диаграмм задачи проектирования стула для чтения.
Надеюсь, что вы сами поработали над этой задачей и построили свою диаграмму. Как можно видеть из рис. 9.16, восприятие «стула для чтения» как отдельного элемента категории «стулья» помогает учесть при рассмотрении проекта как общие качества стульев, так и уникальные качества «стульев для чтения». Таким образом, процесс обобщения и/или специализации позволит вам взглянуть на задачу как в широкой перспективе, так и в узкой.
Случайный поиск и метод проб и ошибок
Вспомните, что структура задачи включает в себя исходное положение и цель, а также пути решения, ведущие от исходного положения к цели. Одной из стратегий поиска возможных путей решения является случайный поиск. Хотя такой подход не выглядит серьезной стратегией решения задачи, а кажется скорее псевдостратегией, в некоторых случаях он оказывается весьма полезным. Если задача имеет небольшое число возможных путей решения, то случайный поиск приведет к цели в кратчайший срок. Совершенно случайный поиск означал бы отсутствие систематического порядка рассмотрения вариантов и возможность повтора уже рассмотренных решении. Поэтому более предпочтительной стратегией является систематический поиск методом проб и ошибок по всему пространству задачи (содержащему пути решения, цель и исходное положение). Лучше всего применять метод проб и ошибок к решению четко поставленных задач, имеющих конечное число возможных путей решения. Применение этого метода хорошо подходит при решении коротких анаграмм. Например, переставьте следующие буквы так, чтобы получилось слово: