Чтение онлайн

на главную - закладки

Жанры

Пуговицы Наполеона. Семнадцать молекул, которые изменили мир
Шрифт:

Цис-форма

Транс-форма

В цис-структуре два атома водорода (а также CH3 группы) располагаются с одной и той же стороны от двойной связи, а в транс-структуре атомы водорода (и CH3 группы) располагаются по разные стороны от двойной связи. Это, казалось бы, незначительное различие в расположении групп и атомов по отношению к двойной связи оказывает чрезвычайно сильное влияние на свойства полимеров изопрена. Стоит

сказать, что изопрен — это лишь одно из многих органических соединений, существующих в цис— и транс-форме, и в каждом случае химических вещества с разным расположением групп относительно двойной связи заметно отличаются по своим свойствам.

На рисунке внизу изображены четыре молекулы изопрена, готовые вступить в реакцию с образованием молекулы природной резины:

На следующей странице пунктирными линиями обозначено продолжение полимерной цепи, которое может происходить в случае присоединения новых молекул изопрена.

Фрагмент структуры природной резины

При соединении молекул изопрена образуются новые двойные связи. Все они имеют цис-форму по отношению к полимерной цепи; это означает, что “вход” и “выход” полимерной цепи в каждое мономерное звено осуществляется с одной и той же стороны от двойной связи.

Атомы углерода, продолжающие полимерную цепь, располагаются с одной и той же стороны от двойной связи, следовательно, это цис-изомер

Такое строение цепи имеет определяющее значение для эластичности резины. Однако в природе полимеризация изопрена не всегда происходит именно таким образом. Если присоединение звеньев идет в транс-положении, получается полимер, свойства которого отличаются от свойств природного каучука. Если молекулу изопрена повернуть так, как показано на рисунке:

а затем соединить четыре такие молекулы,

то получится транс-изомер каучука.

Продолжающаяся углеродная цепь подходит к этой двойной связи с разных сторон. Таким образом, здесь изображен транс-изомер.

Этот транс-изомер встречается в природе в виде двух веществ — гуттаперчи и балаты. Гуттаперчу получают из млечного сока различных представителей семейства Sapotaceae, в частности деревьев рода Palaquium, произрастающих на полуострове Малакка. Примерно на 80 % гуттаперча состоит из трансизомера изопрена. Балата, которую получают из млечного сока растения Mimusopsglobosa, произрастающего в Панаме и на севере Южной Америки, содержит аналогичный трансполимер. Как гуттаперчу, так и балату можно плавить и формовать, но через некоторое время под действием воздуха эти вещества твердеют и роговеют. Однако под водой этого не происходит, поэтому в конце XIX и начале XX века гуттаперчу широко использовали в качестве покрытия для подводной части кабелей. Гуттаперчу также применяли врачи и дантисты, например, для изготовления шин, катетеров и щипцов, для припарок от нарывов и в качестве пломбировочного материала для лечения зубов.

Ценные свойства гуттаперчи и балаты, возможно, более всего оценили любители гольфа. Сначала мячи для гольфа были деревянными, чаще всего их делали из древесины вяза или березы. Однако в начале XVIII века шотландцы изобрели “перьевые” мячи — кожаные мячи с набивкой из гусиных перьев. Такие мячи летели примерно вдвое дальше деревянных, однако они намокали и в сырую погоду вели себя непредсказуемо. Кроме того, со временем эти мячи рассыпались, причем были в десять с лишним раз дороже деревянных.

Наконец в 1848 году появились гутти. Эти мячи делали из гуттаперчи, которую кипятили в воде, а затем вручную (позднее с помощью металлических отливок) лепили из нее шар и оставляли твердеть.

Такие мячи вскоре стали очень популярными, но и у них были свои недостатки. Со временем транс-изомер изопрена становится жестким, так что старые гуттаперчевые мячи частенько разваливались прямо во время игры. Правила игры в гольф это учитывали, и в такой ситуации игроку разрешалось взять новый мяч, поставив его в то место, куда упал самый крупный фрагмент рассыпавшегося мяча. Кроме того, истертые и ободранные мячи летели дальше. В общем, производители задумались над разработкой новых мячей и наконец создали современные мячи, поверхность которых покрыта небольшими углублениями. В конце XIX века цис-изомер изопрена также проник в сферу гольфа: появились мячи с гуттаперчевым ядром и оболочкой из каучука. Сегодня мячи для гольфа делают из множества разных материалов. Некоторые из них содержат каучук. Покрытие до сих пор иногда делают из транс-изомера изопрена, но чаще из балаты, чем из гуттаперчи.

“Отцы” резины

Майкл Фарадей не был единственным ученым, экспериментировавшим с резиной. В 1823 году химик из Глазго Чарльз Макинтош использовал нафту, продукт переработки угля, в качестве растворителя для изготовления прорезиненной ткани. Водонепроницаемые плащи до сих пор называют макинтошами. Открытие Макинтоша способствовало активному применению резины для изготовления механических устройств, шлангов, ботинок и резиновых сапог, шляп и плащей.

В начале 30-х годов XIX века в США началась “резиновая лихорадка”. Однако несмотря на водоотталкивающие свойства изделий из резины, их популярность пошла на спад, когда люди поняли, что зимой прорезиненная одежда становится жесткой, как камень, а летом плавится и издает неприятный запах. “Резиновая лихорадка” прошла очень скоро, и казалось, что резина останется всего лишь любопытным материалом, пригодным только для ластиков. Слово “резина” (rubber) [10] в 1770 году придумал английский химик Джозеф Пристли, который обнаружил, что кусочек каучука стирает (rubout) следы карандаша лучше, чем сырой хлеб, которым пользовались для этой цели. Ластики продавались в Англии как “индийские”, в связи с чем распространилось ошибочное мнение о том, что родиной резины является Индия.

10

В английском языке rubber означает и резину (материал), и ластик (изделие из резины). Слово “резина” в русском языке, скорее всего, происходит от французского слова resine (смола), а латинский корень resina восходит к греческим корням.

В начале “резиновой лихорадки”, около 1834 года, американский изобретатель и предприниматель Чарльз Гудьир осуществил серию экспериментов, вызвавших гораздо более длительный интерес к резине. Гудьир был скорее изобретателем, чем бизнесменом. Он всю жизнь прожил в долгах, несколько раз становился банкротом и называл долговые тюрьмы своими “отелями”. Гудьиру пришла мысль, что путем смешивания какого-либо сухого порошка с резиной можно добиться впитывания избыточной влаги, которая делает резину липкой в жаркую погоду. Он изучил свойства разных смесей. Каждый раз ему казалось, что ответ найден, но летом проблема возникала вновь: температура поднималась, и резиновая обувь и одежда опять начинали расплываться и неприятно пахнуть. Соседи жаловались на запах, исходящий из его мастерской, спонсоры отступались, но Гудьир упрямо продолжал поиски.

Одна серия экспериментов дала интересные результаты. Если обработать резину азотной кислотой, она превращается в практически сухой гладкий материал, который, как надеялся Гудьир, не должен изменяться при смене температуры. Он вновь нашел спонсора, который помог ему получить государственный подряд на производство почтовых сумок. Теперь Гудьир был уверен, что добился успеха. Он оставил готовые сумки в закрытом помещении и уехал с семьей на летние каникулы. Возвратившись, он обнаружил, что сумки слиплись в бесформенную массу, до боли знакомую.

Удача пришла к изобретателю только зимой 1839 года, когда Гудьир проводил эксперименты по смешиванию резины с порошком серы. Он случайно просыпал немного этой смеси на горячую печь. Чутье исследователя подсказало ему, что обуглившаяся клейкая масса может представлять определенный интерес. Он понял, что сера и нагревание изменили резину необходимым образом, однако пока не знал, сколько серы и какая температура нужны для получения оптимального результата. Гудьир продолжал эксперименты на собственной кухне. Он прижигал утюгом смесь серы с резиной, запекал ее в печи, жарил на огне, прогревал над чайником и зарывал в горячий песок.

Поделиться:
Популярные книги

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Последний рейд

Сай Ярослав
5. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Последний рейд

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Серые сутки

Сай Ярослав
4. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Серые сутки

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III