Чтение онлайн

на главную

Жанры

Путешествие к далеким мирам
Шрифт:

Обычно считают, что с высоты 800 — 1000 километров начинается уже так называемая зона рассеяния. Из этой зоны часть молекул воздуха улетучивается в мировое пространство, чтобы рассеяться в нем. Воздух в этой зоне так разрежен, что молекула пролетает сотни километров до очередного столкновения с какой-нибудь другой молекулой. Эти столкновения там почти отсутствуют, тогда как у земной поверхности столкновения молекул происходят сотни тысяч раз на пути в 1 сантиметр.

Строение земной атмосферы неоднородно, и межпланетная ракета, пересекающая атмосферу, будет переходить из одной ее зоны в другую, как альпинист, пересекающий различные климатические зоны при высокогорном восхождении.

Ближайший к земной поверхности слой атмосферы, так называемая тропосфера, имеет высоту 7-18 километров, в зависимости от времени года и географической широты (меньше — на полюсе, больше — на экваторе). Тропосфера — это кузница погоды; в ней, в основном, происходят процессы, определяющие погоду: зарождаются дожди,

ветры, туманы. Температура воздуха в тропосфере, по мере увеличения высоты, непрерывно падает, достигая минус 50–60° на верхней границе тропосферы. Это объясняется тем, что тропосфера нагревается теплом, которое излучает земная поверхность: чем дальше от этой «печки», тем холоднее воздух. В тропосфере находится около 80 процентов всей атмосферы.

Выше тропосферы начинается стратосфера, хотя часто различают еще небольшой промежуточный слой — тропопаузу. Было время, когда считали, что температура воздуха в стратосфере с высотой не меняется, оставаясь равной примерно минус 60°, а затем постепенно снижается, так что у границ атмосферы уже царит холод мирового пространства. В действительности же оказалось, что мороз в 60° сохраняется лишь до высоты 30–40 километров, а затем температура воздуха начинает вдруг повышаться, достигая на высоте 50–60 километров примерно нуля градусов. Вслед за этим температура опять резко падает: на высоте 80 километров уже снова мороз, да такой крепкий, что и на полюсе холода, в якутском селении Оймяконе, подобного не бывает, — минус 80° и более. [28] Но это уже последнее снижение. Здесь температура снова начинает расти: на высоте 200 километров она достигает плюс 800-1000°, а на высоте 1000–1100 километров становится равной 3000°. По мнению некоторых ученых, на еще больших высотах температура воздуха достигает десятков тысяч градусов.

28

Именно на этой высоте обнаруживаются так называемые светящиеся облака, которые, по теории советских ученых, созданной в 1951 году, состоят из мелких кристалликов льда, образующихся на этих высотах. Кстати сказать, только в 1958 году впервые удалось зафиксировать на Земле такие низкие температуры воздуха — в районе антарктической научной станции «Восток» 26 июля была измерена температура воздуха минус 87,4°, представляющая собой, по-видимому, абсолютный минимум температуры на земном шаре.

Это оказывается не только неожиданным, но, на первый взгляд, и очень грозным обстоятельством для будущих межпланетных путешественников. Неужели межпланетному кораблю придется сотни километров лететь в условиях, существующих в топках котлов или в мартеновских печах, если не худших? К счастью, на самом деле все обстоит совсем иначе, и никаких «зон огня» межпланетному кораблю преодолевать не придется — понятие температуры на очень больших высотах становится иным, чем у Земли.

На этих высотах воздух так разрежен, что о поверхность ракеты каждое мгновение будет ударяться только сравнительно небольшое число молекул, а ведь именно эти удары и повышают температуру оболочки ракеты. В то же время оболочка ракеты будет терять много тепла из-за его излучения в окружающее пространство. Вследствие этого на таких больших высотах никакой «жары», конечно, нет, и температура поверхности ракеты будет там даже ниже, чем на меньших высотах, если только она не накаляется лучами Солнца. В этом случае ее температура может превышать 100°.

Наши знания о верхних слоях атмосферы все время обогащаются. Немалую роль в этом играют изобретенные советским ученым П. А. Молчановым воздушные шары — радиозонды, первый полет которых был осуществлен в 1930 году. Все большее значение приобретают предложенные еще Циолковским высотные метеорологические ракеты. Ценные сведения наука уже сумела получить с помощью первых искусственных спутников Земли и в результате полета советской космической ракеты.

Было время, когда думали, что в стратосфере вовсе нет ветров и царит мертвый штиль. Оказалось, что это не так. В стратосфере дуют ветры со скоростью 300–400, а на больших высотах — даже до 1500 километров в час. Эти ветры, неспособные пошевелить даже волосы на голове — так там разрежен воздух, — отличаются исключительным постоянством: они почти всегда дуют на восток. Раньше считали также, что стратосфера не оказывает никакого влияния на земную погоду, — это тоже оказалось ошибочным.

Стратосфера простирается до высоты примерно 70–80 километров и содержит в себе почти все оставшееся количество воздуха, то есть 20 процентов. Вся атмосфера, лежащая выше стратосферы на многие сотни километров в высоту, заключает в себе менее 0,5 процента общего количества воздуха в атмосфере.

Совершенно особую, исключительно важную роль в нашей жизни играет первая половина стратосферы благодаря тому, что она содержит в большом количестве озон. [29] Молекулы озона, состоящие из трех атомов кислорода, поглощают коротковолновое (так называемое жесткое) ультрафиолетовое излучение Солнца. Этот слой озона является фильтром, защищающим нас от опасных, неослабленных солнечных лучей.

29

Спасительный слой озона, простирающийся от поверхности Земли до 60 километров вверх, на уровне моря имел бы толщину всего около 2–3 миллиметров. 60 процентов всего озона находится на высотах от 16 до 32 километров, а его максимальная концентрация соответствует высоте около 25 километров.

На больших высотах, начиная примерно с 70 километров, атмосфера состоит в основном не из обычных молекул воздуха, а из ионов, то есть молекул и атомов, имеющих электрический заряд. Поэтому верхние слои атмосферы называют обычно ионосферой. Ионы появляются на этих высотах главным образом под действием ультрафиолетовых лучей Солнца, отрывающих от обычных молекул воздуха электроны. Действием ультрафиолетового излучения объясняется и повышение температуры воздуха с высотой, а также то, что на очень больших высотах молекул кислорода и азота уже нет: они распадаются на атомы. По существу, земная атмосфера — это огромный электрохимический завод: в его цехах, то есть в разных слоях атмосферы, происходят сложные процессы образования различных веществ с использованием энергии Солнца.

Слои ионосферы, расположенные на различных высотах, обладают неодинаковыми свойствами, в частности электромагнитными, и потому, например, по-разному влияют на распространение радиоволн. Так называемый D– слой ионосферы, находящийся на высоте 70–90 километров, отражает длинные радиоволны; E– слой, расположенный на высоте 100–120 километров, — средние; F– слой, лежащий на высоте 200–300 километров, — короткие. Эти слои ионосферы различаются своим составом и степенью ионизации. [30] Поэтому они по-разному и влияют на распространение радиоволн. Волны ультракоротковолнового диапазона, длиной примерно от 1 сантиметра до 20 метров, в значительной степени проходят через ионосферу. Это позволит в будущем установить радиосвязь между Землей и кораблями, летящими в мировом пространстве, но зато препятствует дальнему радиовещанию на этих волнах и, в частности, передачам телевидения на большие расстояния.

30

Исследования с помощью высотных ракет показали, что электрически заряженной является вся ионосфера, а не только отдельные ее слои. Указанным слоям соответствуют максимумы электронной концентрации.

Наличие земной атмосферы усложняет проблему межпланетного полета. Это связано главным образом с сопротивлением, которое оказывает воздух передвигающемуся в нем телу. Из-за него для совершения межпланетного полета понадобится затратить большую энергию, чем это необходимо для сообщения межпланетному кораблю скорости отрыва. Это равносильно необходимости сообщить кораблю какую-то дополнительную скорость, которая будет зависеть от скорости полета корабля в атмосфере — она тем меньше, чем меньше эта скорость, — а также от формы корабля и траектории полета. Для оценки величины дополнительной скорости можно принять, что она не будет превышать 1 километр в секунду, то есть около 10 процентов от скорости отрыва. Но гораздо более серьезные неприятности будет причинять атмосфера межпланетному кораблю в связи с его нагревом при полете в воздухе с большой скоростью. Ни конструктор, ни командир межпланетного корабля не имеют права ни на минуту забывать об этой опасности, которая может стать роковой.

Однако атмосфера может сослужить и хорошую службу межпланетному кораблю, — нужно лишь умело использовать ее свойства.

Так, например, при посадке на Землю торможение в атмосфере будет гасить скорость межпланетного корабля без затраты на это топлива, а при взлете может оказаться выгодным использование воздушно-реактивных двигателей, расходующих гораздо меньше топлива, чем ракетные.

Несколько неожиданные, может быть, перспективы использования свойств атмосферы на службе астронавтике (впрочем, это в такой же мере касается и авиации) открывают результаты недавних опытов, проведенных в США. Эти опыты подтвердили высказывавшиеся ранее некоторыми учеными предположения о том, что происходящая в верхних слоях атмосферы диссоциация, то есть распад, молекул воздуха на атомы, под действием солнечного излучения открывает принципиальные возможности использования запасенной в атмосфере в результате этого процесса солнечной энергии. Действительно, если диссоциация молекул происходит с затратой больших количеств энергии, излучаемой Солнцем, то при обратном процессе воссоединения, или, как говорят, рекомбинации атомов в молекулы, эта энергия может быть выделена вновь. Такая рекомбинация, вероятно, идет в природе естественным путем, вызывая известное явление свечения ночного неба. Но эта реакция оказывается очень медленной. Ускорить ее можно было бы с помощью какого-нибудь катализатора, как это часто делается в химии. Но как забросить такой катализатор на высоту в десятки километров? Вот тут-то ученые и обратились за помощью к ракетной технике.

Поделиться:
Популярные книги

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Полководец поневоле

Распопов Дмитрий Викторович
3. Фараон
Фантастика:
попаданцы
5.00
рейтинг книги
Полководец поневоле

"Колхоз: Назад в СССР". Компиляция. Книги 1-9

Барчук Павел
Колхоз!
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Колхоз: Назад в СССР. Компиляция. Книги 1-9

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Мимик!

Северный Лис
1. Сбой Системы!
Фантастика:
боевая фантастика
5.40
рейтинг книги
Мимик!

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Гром над Империей. Часть 2

Машуков Тимур
6. Гром над миром
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Гром над Империей. Часть 2

Дикая фиалка Юга

Шах Ольга
Фантастика:
фэнтези
5.00
рейтинг книги
Дикая фиалка Юга

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант