Пять возрастов Вселенной
Шрифт:
Судьба звезд с низкой массой
Один астроном, работавший в Обсерватории Южно-Африканской республики в Йоханнесбурге в 1916 году, сообщил об открытии тусклой звезды в южном созвездии Центавра. Эта (во всех других отношениях ничем не примечательная) звезда, слишком тусклая, чтобы ее можно было увидеть невооруженным глазом, привлекла его внимание, потому что медленно изменяла свое положение по отношению к другим звездам, находящимся в той же части неба. Это движение указывало на то, что данная звезда вполне может быть близким соседом Солнца, и в 1917 году это предположение получило экспериментальное подтверждение. Оказалось, что расстояние до этой звезды составляет всего 4,3 световых лет: она находилась ближе к Солнцу, чем любая другая известная звезда. Ее чрезвычайная тусклость, несмотря на столь близкое расположение, в сущности, придавала ей статус наименее светящейся звезды, известной астрономии на тот момент. Сейчас мы знаем, что Проксима Центавра, как ее впоследствии
На сегодняшний день эти красные карлики — самые распространенные звезды, и от Солнца они отличаются в нескольких отношениях. Масса Проксимы составляет около пятнадцати процентов солнечной, ее средняя плотность в несколько раз превышает плотность свинца, а мощность ее излучения — в четыреста раз слабее, чем у нашего Солнца. Но даже это весьма скромное количество энергии с трудом отделяется от плотных недр звезды. Центр Проксимы настолько непроницаем, что излучение не может эффективно перенести всю энергию, вырабатываемую в ходе синтеза, на поверхность звезды. Чтобы донести свой слабый свет до поверхности, Проксиме приходится прибегать к конвекции — процессу, в ходе которого турбулентное движение звездного газа физически уносит энергию от центра звезды. В обыденной жизни конвекцию можно наблюдать в кастрюле с водой, нагреваемой на плите. Горячая вода закипает вблизи центра кастрюли, отдает часть своего тепла и возвращается на дно. Это взбалтывание и перемешивание воды весьма напоминает конвекционные движения, благодаря которым в звездах с низкой массой осуществляется перенос энергии.
В конвекции принимает участие почти вся внутренняя область Проксимы, вследствие чего звездное вещество постоянно перемешивается. К примеру, ядро гелия, образовавшееся в самом центре звезды, где происходят реакции ядерного горения, вполне может попасть в поверхностные области звезды за относительно короткий промежуток времени. Такая свобода движения прямо противоположна ситуации, существующей на Солнце, ядро которого является скорее излучающим, нежели конвективным. Гелий, образующийся в центре Солнца, никогда не удаляется от места своего образования. Таким образом, ядро Солнца постепенно накапливает гелий, тогда как исходный состав удаленных от него областей остается неизменным. Звезда низкой массы типа Проксимы является полностью конвективной и сохраняет доступ ко всему начальному запасу водородного топлива. Полная конвекция, вкупе с небольшой выработкой энергии, позволяет красным карликам сохраняться в почти неизменном состоянии в течение еще долгого времени после того, как звезды с более высокой массой превратятся в белых карликов или погибнут во вспышках суперновых.
В силу того что красные карлики имеют доступ почти ко всему имеющемуся у них водороду, они живут невероятно долго. Самые маленькие звезды, масса которых равна около одной десятой массы Солнца, светят в тысячу раз тусклее Солнца. Ядерная светимость звезды, в конечном итоге, получается путем прямого превращения некоторой части звездного вещества в энергию согласно знаменитой формуле Эйнштейна Е = mс 2. Каждое ядро гелия имеет несколько меньшую массу, чем четыре ядра водорода, из которых оно образуется. Точный дефицит массысоставляет семь десятых процента; четыре ядра водорода весят в 1,007 раз больше одного ядра гелия. При преобразовании одного грамма водорода в гелий за одну секунду высвобождается 630 миллиардов ватт — этого хватит, чтобы автомобиль с мощностью двигателя в триста лошадиных сил ездил целый месяц. Запасы водорода, которыми располагает новорожденный красный карлик с массой, равной одной десятой массы Солнца, могут поддерживать его неизменное свечение на протяжении четырнадцати триллионов лет, что примерно в тысячу раз превышает настоящий возраст Вселенной. При выработке энергии звезда теряет соответствующее количество массы. Для красного карлика эта потеря массы аналогична полностью загруженному товарному поезду, который непрерывно увозит вещество с его поверхности со скоростью сто миль в час.
Пока что за всю историю Вселенной красные карлики просто не имели достаточно времени, чтобы эволюционировать дальше самых первых фаз, когда звезда существует за счет горения водорода. По этой причине, если не считать самых общих оценок времени их жизни, характеру их смерти почти не уделялось внимания. Тем не менее судьба Галактики — в руках красных карликов. После того как более массивные звезды растратят свое ядерное топливо и умрут в юном возрасте, красные карлики продолжат светить. Эти маленькие звезды будут кружиться в пространстве триллионы лет, и все это время в них беспрерывно будет происходить конвекция, они будут медленно сжиматься и постепенно становиться ярче. Таким образом, красные карлики играют важную роль в долгосрочной эволюции Галактики.
Рассмотрим долгосрочную эволюцию звезды с самой низкой массой, составляющей всего восемь процентов массы Солнца. По мере медленного истощения исходного запаса водорода звезда нагревается и сжимается. Светимость звезды увеличивается в десять раз, а температура ее поверхности —
Несколько большая звезда, масса которой составляет около четверти солнечной, быстрее теряет конвективное ядро. Внутри звезды создаются такие условия, которые быстро приводят к понижению температуры поверхности звезды по мере увеличения ее светимости, и звезда эволюционирует в красного гиганта. Звезды, рожденные с четвертью солнечной массы, — это самые маленькие звезды, которые впоследствии превращаются в красных гигантов.
Когда массивные звезды умрут, не оставив после себя должной замены, большую долю общего светового излучения Галактики будет производить огромное скопление стареющих красных карликов. Их слабое, но неизменное увеличение светимости будет поддерживать в Галактике свечение, эквивалентное свету миллиарда Солнц на протяжении триллионов лет. Например, звезда с массой, равной 0,2 массы Солнца, по прошествии триллиона лет будет иметь такую же светимость и температуру поверхности, что и наше Солнце сегодня. Если бы эта звезда каким-то образом могла поменяться местами с нашим Солнцем в центре Солнечной системы, Земля и другие планеты внезапно оказались бы на свободных гиперболических орбитах (из-за разности масс), но яркость и цвет такой звезды в небе ничем не отличались бы от нашего Солнца.
Многие звезды с низкой массой проживают продолжительный период, во время которого они сжимаются и становятся горячее, но их общая светимость остается приблизительно постоянной. Для звезды, масса которой равна 0,16 массы Солнца, эта фаза начинается сразу после того, как все ядро превратилось в чистый гелий и фронт горения водорода начинает продвигаться к поверхности. В этот период, длящийся более пяти миллиардов лет, звезда имеет относительно постоянную светимость, равную приблизительно одной трети светимости нашего сегодняшнего Солнца. Эта теплая фаза устойчивой светимости длится достаточно долго, так что на любых планетах, расположенных в подходящем для этого месте, может развиться жизнь. Вспомним, что здесь, на Земле, простые одноклеточные организмы эволюционировали в людей менее чем за четыре миллиарда лет. В эту эпоху звезда достигает максимальной яркости. До этого позднего периода теплого свечения любые планеты, которые могли сопровождать эту звезду, погибли бы от холода, пока звезда в течение триллионов лет пребывала бы на эволюционной стадии конвекции.
По мере старения Галактики и смены звездных поколений концентрация тяжелых элементов в межзвездном пространстве неуклонно возрастает. В результате в далеком будущем звезды будут содержать больше ядер тяжелых элементов, чем современные. Это грядущее увеличение примесей снижает минимальную массу, которую должна иметь звезда, чтобы поддерживать горение водорода. Когда уровень примесей достигнет значения, в несколько раз превышающего современное солнечное, реакции водородного синтеза в своем ядре смогут поддерживать даже те звездные объекты, масса которых составляет всего четыре процента массы Солнца, причем в их атмосферах сконденсируются плотные ледяные облака. Эти странные замерзшие звезды могут похвастаться фактическими температурами, близкими к точке замерзания воды: нулю градусов Цельсия или 273 градусам Кельвина, — куда холоднее самых маленьких и холодных современных звезд. Так как эти бережливые объекты сжигают свое водородное топливо медленно, излучая в миллион раз слабее Солнца, они, соответственно, достигают огромного увеличения продолжительности своей жизни.
Поиск внеземной жизни
Планета, которая вращается по орбите относительно массивной звезды — например, Денеб в созвездии Лебедя, — вряд ли является местом обитания внеземной цивилизации. Звезда вроде Денеба, масса которого в десять раз превышает массу Солнца, живет всего десять миллионов лет, после чего погибает во вспышке сверхновой. Даже если по орбите Денеба вращается планета типа Земли, ее поверхность остается жидкой или полутвердой и подвержена сильному ионизационному излучению, которое исходит от кипящей поверхности звезды. Эта гипотетическая планета принадлежит к внесолнечной системе, которая находится в стадии мучительного образования. Интенсивный «обстрел» планеты планетозималями, метеоритами и кометами активно добавляет планете вещество и непрерывно изменяет ее климат. Подобная система еще слишком молода, чтобы на ней могла развиться хоть какая-то сложная жизнь, не говоря уже о разумной цивилизации.