Радиоэлектроника-с компьютером и паяльником
Шрифт:
В предвоенные годы в СССР были выполнены основополагающие работы в этой области. Идея радиолокации была высказана советским ученым П. К. Ощепковым. В 1934–1935 гг. под руководством С. А. Зусмановского был создан двухщелевой магнетрон мощностью около 1 кВт. Многорезонаторные магнетроны оригинальной конструкции, идея которых была предложена М. А. Бонч-Бруевичем, были изготовлены инженерами Н.Ф. Алексеевым и Д. Е. Маляровым в 1936–1937 гг.
На рис. 10, а показан общий вид магнетрона от бытовой СВЧ-печи, а на рис. 10, б, в разрезы более мощного специального магнетрона с перестраиваемой частотой.
Рис. 10. Магнетроны:
а —
Колебания электронного потока (во времени и в пространстве) в резонаторе приводят к генерированию электромагнитных волн в диапазоне от миллиметровых до метровых (в зависимости от геометрии системы). Излучение волн во внешнее пространство осуществляется через антенный вывод, который в бытовом магнетроне представляет собой пакетированную систему: снаружи «штенгеля» (запаянной стеклянной трубки, через которую откачивался воздух в процессе изготовления) надет цилиндр из «радиопрозрачного» фарфора, заканчивающийся медным колпачком (см. в верхней части рис. 10, а) высотой около 1,5 см. Колпачок соединен со связками внутри анодного блока магнетрона специальной петлей связи, проходящей внутри «штенгеля».
Магнетроны, используемые в бытовых СВЧ (микроволновых) печах имеют мощность порядка 1 кВт; их КПД доходит до 85 %. Для питания подобного магнетрона используется высоковольтный выпрямитель с напряжением около 4 кВ.
Электронно-лучевые приборы
Кинескоп — игрушка дорогая.
М. Гук. Аппаратные средства IBM PC
Электровакуумные приборы приобретают особые свойства, если поток термоэлектронов сконцентрировать в виде луча или пучка лучей.
В электронно-лучевых трубках (ЭЛТ) катодный узел, размещаемый в ее горловине, называют электронным прожектором, или пушкой (рис. 11).
Рис. 11. Электронно-лучевая трубка:
а — кинескоп; б — схема ЭЛТ (1 — электронная пушка; 2 — отклоняющие катушки; 3 — анод; 4 — электронный луч)
Конструкции прожекторов могут быть достаточно сложными, например пентодными. Далее по ходу луча следует отклоняющая система — электростатическая или электромагнитная (дополнительное внешнее устройство) и приемник электронов — экран. Колбу трубки чаще всего делают из стекла и внутри покрывают слоем графита («аквадага»),
Различают осциллографические трубки, используемые для регистрации быстропротекающих электрических процессов, индикаторные — для радиолокации, а также телевизионные кинескопы и передающие трубки, и дисплеи мониторов персональных компьютеров.
В осциллографических трубках для получения изображения к горизонтально отклоняющим пластинам подводится пилообразно изменяющееся напряжение — напряжение развертки, а к вертикально отклоняющим — напряжение исследуемого сигнала (прошедшего через канал усиления).
В зависимости от скорости развертки по горизонтали (измеряемой временем на одно деление шкалы), характеристики сигнала, усилителя и чувствительности отклоняющей системы на экране возникает та или иная картина. В приборах, использующих эти трубки — электронно-лучевых осциллографах (осциллоскопах) — имеются соответствующие регулировки. Для одновременного наблюдения на экране различных сигналов используют многолучевые трубки.
Кинескоп — приемная ЭЛТ, был изобретен в США в 1929 г. В. К. Зворыкиным, эмигрировавшим после революции из России ученым. Он же и там же, в 1932 г., изобрел и первую передающую телевизионную трубку иконоскоп (от греч. eik'on — изображение и sкор'eо — смотрю, рассматриваю). «Как хорошо, что Зворыкин уехал, и телевиденье там изобрел…», — пел по этому поводу Б. Окуджава.
В кинескопе для получения телевизионного изображения используется растровая развертка, при которой луч прочерчивает горизонтальные строки (строчная развертка) с одновременным их смещением по вертикали (кадровая развертка). Яркость свечения автоматически управляется телевизионным сигналом, подаваемым на катод (модулятор) после его обработки в телевизионном приемнике.
Для получения цветного изображения используют принцип пропорционального смешения цветов. Кинескоп выполняют с трехкомпонентным люминофором (дающим красное, зеленое и синее свечение каждый) и устанавливают три автономно управляемых прожектора. Перед люминофором с внутренней стороны располагают также специальную сетчатую (щелевую) цветоразделительную (теневую) маску, обеспечивающую попадание лучей на соответствующие сегменты люминофора (см. рис. 11, а).
Дисплеи мониторов ПК часто являются усовершенствованными кинескопами. (При появлении ПК умельцы приспосабливали телевизионные приемники для вывода видеоинформации из компьютера.) В зависимости от типа монитора используют монохромные (черно-белые, черно-зеленые и черно-желтые) дисплеи или цветные дисплеи.
Основным параметром дисплея является размер его экрана по диагонали и размер зерна-триады люминофора, выбираемый шагом отверстий матрицы теневой маски. Существуют мониторы с диагональю от 14 до 21 дюйма и зернистостью от 0,42 до 0,26 мм и тоньше. В прямой зависимости от указанных величин находится экранное разрешение изображения, которое можно получить на мониторе. Эту характеристику принято оценивать полным числом высвечиваемых элементов — точек или пиксел, измеренных по горизонтали и вертикали, например, 800x600, 1024x768 или 1280x1024 пиксел. (Интересно отметить, что масочный дисплей по своей конструкции уже является не аналоговым, а как бы цифровым устройством.) Реальная разрешающая способность будет, конечно, зависеть от полосы пропускания всего видеотракта. Чистота цвета также зависит от намагничивания элементов монитора и кинескопа (в основном, его маски), поэтому в мониторах предусматривают специальные системы размагничивания. Опытный радиолюбитель никогда не поднесет динамические головки к экрану: это все равно, что стукнуть его молотком (далее см. эпиграф данного раздела).