Чтение онлайн

на главную - закладки

Жанры

Радиоэлектроника-с компьютером и паяльником
Шрифт:

Рассматриваемые транзисторы имеют трехслойную структуру с чередующимися типами проводимости электронной (n) и дырочной (р), т. е. n-р-n или р-n-р. Наличие двух видов носителей зарядов обусловило их название «биполярные транзисторы». Современные транзисторы изготавливают совсем по другим технологиям, и они совсем не похожи на своих предтечей. Однако условное графическое обозначение биполярных транзисторов несет на себе исторические черты их рождения: средняя поперечная черта — пластинка-основание, символизирует базу, а две косые черточки, контактирующие с ней, два других электрода (бывшие «кошачьи усы») — это коллектор и эмиттер. Для того чтобы отличать транзисторы двух типов эмиттер изображают в виде стрелки, направленной

к базе для р-n-р типа и от нее для n-р-n типа.

Таким образом, и здесь, как и в диоде, за основу взято условно-положительное направление тока в цепи: «от плюса к минусу» или, в данном случае, от p– области к n– области. Помня это нехитрое правило, не трудно по графическому изображению транзистора на схеме указать его тип, а это позволяет, по крайней мере, сразу разобраться с включением полярности источников питания (рис. 14).

Рис. 14. Транзисторы:

а — внешний вид; б, в — УГО биполярных транзисторовn-р-n и р-n-р типов и их модельные компоненты EWB; г, д — УГО полевых транзисторов с n- и p-каналами и их модельные компоненты EWB

Как уже указывалось выше, транзистор, представляющий собой электрический трехполюсник, включается в каскады в качестве четырехполюсника, поэтому один вывод с неизбежностью становится общим, что и дает название схеме включения. Наиболее распространенной является схема с общим эмиттером. Схемотехника транзисторных цепей с общим эмиттером аналогична схемотехнике ламповых цепей с триодами: эмиттер — катод, база — сетка, а коллектор — анод.

Полевые транзисторы

История изобретения и создания этого класса полупроводниковых приборов достаточно туманна: в разных источниках скупо упоминаются различные люди и даты. Возможно, что это связано с большой разновидностью подобных устройств. Поэтому, не анализируя, перечислим все известные нам факты в хронологическом порядке. В 1925 г. Юлиус Лилленфельд изобрел полевой транзистор с р-n переходом и полевой транзистор с изолированным затвором. В 1939 г. английский ученый О. Хейл получил патент на устройство, в котором электрическое поле изолированного электрода управляло током, протекающим в тонком слое полупроводника. В 1952 г. упомянутый выше Шокли дал теоретическое описание униполярного полевого транзистора. Такие транзисторы, получившие название полевых с управляемым р-n переходом были впоследствии изготовлены Дейси и Россом, которые в 1955 г. также дали аналитическое описание их характеристик. В 1956 г. С. Тешнер (Франция) изобрел одну из разновидностей полевых транзисторов. В 1960 г. М. Атала и Д. Канг предложили использовать структуру металл-окисел-полупроводник в качестве основы для создания особого вида полевых транзисторов. Очевидно, что именно с этих транзисторов, которые стали широко использоваться в интегральных микросхемах, и по-настоящему началась эра полевых транзисторов. Полевые транзисторы не вытеснили биполярные, а лишь удачно дополнили их, так как обладали рядом уникальных особенностей, с которыми можно легко ознакомиться в виртуальных моделях.

Вначале дадим некоторые пояснения терминов и обозначений. Названия этого класса полупроводниковых приборов связаны с их принципом действия. В некоторой области полупроводника (канале, отсюда одно из названий — канальные) протекает ток основных носителей заряда, одного знака отсюда — униполярные транзисторы. Управление значением тока осуществляется поперечным электрическим полем, отсюда другое название — полевые транзисторы (в английской транслитерации — Field Effect Transistor, сокращенно FET). Все эти названия с разных

сторон характеризуют один и тот же прибор и являются общеупотребительными.

Все разновидности полевых транзисторов можно, по существу, разделить на два больших класса: полевые транзисторы с управляющим р-n переходом — Junction (плоскостной) FET, или JFET, и полевые транзисторы с изолированным затвором — Insulated (изолированный) Gate (затвор), т. е. Insulated Gate FET, или сокращенно IJFET. Транзисторы последнего типа содержат в своей структуре Металл-Оксид-Полупроводник, отсюда сокращенно МОП или, на английском, Metall-Oxide-Semiconductor FET (MOSFET). Поскольку используемые оксиды (диоксид кремния SiО2) являются частным случаем диэлектрика, то в русском наименовании слово «оксид» меняют на «диэлектрик» и тогда аббревиатура превращается в МДП (соответственно в английском это Insulator и сокращенно MISFET). Выделяют также полевые транзисторы с каналом n– типа на основе арсенида галлия GaAsFET.

Использование комплементарных структур добавляет в русской аббревиатуре в их названии префикс «К»: КМОП или в английском «С» (от Complementary): CMOS. Именно последний акроним используется для обозначения энергонезависящей памяти компьютера, выполненной в виде интегральной микросхемы по соответствующей технологии. Данная микросхема хранит все начальные установки конфигурации ПК и, обладая малым потреблением энергии, работает годами без выключения, питаясь от миниатюрного аккумулятора.

В символике УГО полевых транзисторов (см. рис. 14 г, д) присутствует все та же направляющая стрелка, обозначающая электрод, называемый затвором (Gate), два других электрода имеют очевидные названия: исток (Source) — аналог эмиттера, сток (Drain) — аналог коллектора.

В полевом транзисторе с каналом p– типа полярности источников обратны. Поскольку входное сопротивление полевого транзистора составляет сотни мегаом. то не трудно сообразить, что ток, протекающий через затвор, очень мал (составляет единицы наноампер, а для МОП транзисторов даже единицы пикоампер). В отсутствие напряжения на затворе ток через него практически равен нулю. В этом, собственно, и заключается основная особенность полевых транзисторов по сравнению с биполярными, обусловившая их широкое распространение в микроэлектронике.

В отличие от виртуальной электроники, в реальной обращение с МОП- и МДП-транзисторами требует большой осторожности. Дело в том, что большая рабочая чувствительность транзисторов связана с использованием тончайших пленок окислов или диэлектрика. Подобные пленки могут быть разрушены даже такими небольшими статическими зарядами, которые возникают на теле человека. Это приносило массу неприятностей при работе с полевыми транзисторами. Для того чтобы избежать повреждения, МОП-транзисторы обычно поставляются с соединенными вместе выводами с использованием специальной упаковки. Особые меры предосторожности принимаются при их монтаже (заземление рабочего инструмента и руки с помощью металлического браслета на запястье и т. п.). К счастью, новейшие МОП-транзисторы теперь частично защищены с помощью стабилитронов, включенных внутри транзистора между затвором и истоком.

Тем не менее, положительные свойства полевых транзисторов таковы, что именно широкое использование МОП-транзисторов в интегральных микросхемах в свое время революционизировало всю цифровую электронику.

Оптоэлектронные компоненты

В различных электронных устройствах широко используются физические сигналы в виде света в видимом, инфракрасном и ультрафиолетовом участках спектра. В связи с этим существует два вида первичных оптоэлектронных устройств: приемники и излучатели света. В первых происходит преобразование энергии света в электрическую энергию или световой сигнал преобразуется в электрический сигнал (здесь, конечно, тоже происходит преобразование энергии, но важны временные параметры). Во вторых происходит обратное преобразование энергии. Наконец, существуют компоненты, в которых происходит двойное преобразование сигнала (энергии) по схеме: «электричество->свет->электричество».

Поделиться:
Популярные книги

Кровь Василиска

Тайниковский
1. Кровь Василиска
Фантастика:
фэнтези
попаданцы
аниме
4.25
рейтинг книги
Кровь Василиска

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Сопряжение 9

Астахов Евгений Евгеньевич
9. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
технофэнтези
рпг
5.00
рейтинг книги
Сопряжение 9

На три фронта

Бредвик Алекс
3. Иной
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
На три фронта

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Игра топа. Между двух огней

Вяч Павел
2. Игра топа
Фантастика:
фэнтези
7.57
рейтинг книги
Игра топа. Между двух огней

Провинциал. Книга 2

Лопарев Игорь Викторович
2. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 2

Идущий в тени 6

Амврелий Марк
6. Идущий в тени
Фантастика:
фэнтези
рпг
5.57
рейтинг книги
Идущий в тени 6

На границе империй. Том 9. Часть 4

INDIGO
17. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 4

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10