Чтение онлайн

на главную

Жанры

Шрифт:

А теперь представьте себе, что нам удалось сделать размер транзистора меньше средней длины свободного пробега. Тогда транзистор уже не будет работать должным образом. Он не будет вести себя так, как мы предполагаем. Это напоминает мне, как еще несколько лет назад считался непреодолимым звуковой барьер. Считалось, что самолеты не могут летать со скоростью, превышающей скорость звука, поскольку, если вы их сконструируете обычным образом и затем попытаетесь вставить скорость звука в уравнения, пропеллер не сможет работать, а крылья не будут обладать подъемной силой, и вообще все будет работать неправильно. Тем не менее самолеты летают со скоростью, превышающей скорость звука. Необходимо понимать, что правильные законы подчиняются правильным условиям, и конструировать приборы необходимо согласно этим законам. Нельзя ждать, что старые разработки будут работать в новых обстоятельствах. В новыхобстоятельствах могут работать только новыепроекты. И я утверждаю, что абсолютно допустимо делать транзисторные системы, или, более правильно, системы коммутации и компьютерные устройства, размеры которых меньше средней длины свободного пробега. Я говорю, конечно, «принципиально возможно», здесь речь не идет о реальном производстве таких устройств. Давайте обсудим, что произойдет,

если мы попытаемся максимально уменьшить размер приборов.

Уменьшение размеров

Итак, моя третья тема — размер компьютерных элементов, и здесь мои предложения носят исключительно теоретический характер. Первое, о чем вам следует беспокоиться, когда изделие становится очень маленьким, — это броуновское движение [7] — все вокруг движется, вибрирует, и ничто не стоит на месте. Как в таком случае можно контролировать схемы? Более того, если схема действительно работает, разве она не имеет возможности случайно совершить обратный скачок? Если мы возьмем обычно используемое напряжение 2 вольта для энергии такой электрической системы (Рис. 5),что в восемьдесят раз больше тепловой энергии при комнатной температуре (кТ = вольта), то вероятность скачка обратного перехода по отношению к тепловой энергии равно е-80 или 10–43. Что это значит? Если в нашем компьютере миллиард транзисторов (пока мы такого количества не имеем) и все они включаются 1010 раз в секунду (время включения составляет десятые доли наносекунды), включаясь непрерывно и работая 109 секунд, что составляет 30 лет, то полное число операций по переключению в такой машине равно 1028. Вероятность того, что один транзистор перейдет в обратное состояние, равна только 10–43, следовательно, никогда в течение 30 лет не произойдет ошибки, вызванной тепловыми осцилляциями. Если вам это не нравится, используйте напряжение 2,5 вольта, и тогда вероятность будет еще меньше. Задолго до этого случится реальная катастрофа, когда космические лучи случайно пройдут через транзистор — нет ничего хуже.

7

Толчкообразное движение частиц, вызванное постоянными случайными столкновениями молекул, впервые описано в печати в 1828 году ботаником Робертом Броуном и объяснено Альбертом Эйнштейном в его статье 1905 года в «Annalen der Physic». — Примеч. ред. иностр. издания.

Однако в действительности возможности гораздо шире — я хотел бы сослаться на недавнюю статью в «Scientific American» С. Беннета и Р. Ландауэра «The Fundamental Physical Limits of Computation» («Фундаментальные физические ограничения вычислений»). Можно сделать компьютер, в котором каждый элемент, каждый транзистор может действовать как в прямом, так дополнительно и в обратном направлении, и все-таки компьютер будет работать. Все операции в компьютере можно проводить в обоих направлениях. Некоторое время вычисления продолжаются одним способом, а затем он сам считает результат недействительным, «развычисляется» и снова движется вперед — и так цикл продолжается. Если его немного переконструировать, можно заставить такой компьютер последовательно анализировать и заканчивать вычисления, чтобы он был более пригоден для расчетов вперед, а не назад.

Известно, что все допустимые вычисления можно выполнять, компилируя несколько простых элементов, например транзисторов; или, если вам нужны логические абстракции, работать с так называемой схемой NAND gate (схема НЕ-И). Такая схема требует два входных «провода» и один выходной (Рис. 6).Забудем на минуту про NOT (НЕ). Что такое схема AND (И)? Схема AND — это устройство с выходом 1, только если оба входных провода представляют 1, в противном случае его выход равен 0. Схема NOT-AND (НЕ-И) означает противоположное, таким образом, выходной провод вчитывается как 1 (то есть имеет уровень напряжения, соответствующий 1), если только оба входа не дают 1. Если же оба входных провода дают 1, то выходной провод читается как 0 (имеет уровень напряжения, соответствующий 0). На рис. 6 показана небольшая таблица входных и выходных данных для схемы NAND. Aw. В —входные данные, а С представляет выход. Если оба, Аи В,равны 1, то выход есть 0, в противном случае 1. Но такое устройство необратимо: информация теряется.

Здесь я знаю только выход и не могу восстановить вход. Нельзя ждать, что устройство двинется рывком вперед, а затем вернется назад и вычислит что-нибудь правильно. Например, если мы знаем, что выход сейчас равен 1, мы не можем восстановить, произошло ли это от А = 0, В = 1, или А= 1, В = 0, или от А = 0, В = 0 — причем нельзя вернуться назад. Такое устройство представляет необратимую схему. Грандиозное открытие Беннета и независимо Фредкина состоит в том, что можно выполнять вычисления с различного рода фундаментальными схемами, например с обратимыми схемами. Проиллюстрирую их идею с помощью устройства, которое можно назвать обратимой схемой NAND. Оно имеет три входа и три выхода (Рис. 7).На выходе два значения А' и В'те же, что и на входе, а третий работает следующим образом. С' имеет то же значение, что и С, если только оба Аи Вне равны 1, в противном случае оно меняется, каким бы ни было С. Например, если С равно 1, С меняется на 0; если же С равно 0, то С меняется на 1 — но эти изменения происходят, если только оба входа Аи Вравны 1. Если вы поставите две эти схемы последовательно, вы увидите, что Аи Впроходят через схему, и если С не меняется, то С' равно С. Если же С меняется, оно меняется дважды, так что оно тоже остается постоянным. Следовательно, эта схема является обратимой, и информация не теряется.

Устройство, построенное целиком на таких схемах, выполняет вычисления при движении вперед. Но если в какой-то период времени происходит движение и вперед, и назад, в итоге оно продвигается вперед и все-таки работает правильно. Если в дальнейшем происходят рывки назад, а затем вперед, работа тем не менее остается скорректированной. Это похоже на то, как частица газа бомбардируется окружающими атомами. Такая частица обычно никуда не уходит, но при малейшем толчке, малейшей флуктуации возникает немного более вероятное движение по одному пути, а не по другому, и частица с медленным дрейфом смещается вперед и проходит от одного до другого конца, несмотря на существование броуновского движения. Так и наш компьютер будет вычислять при условии, что мы приложим дрейфовую силу, чтобы организовать вычисления. Хотя он и не выполняет вычисления плавно, он, во всяком случае, вычисляет и вперед, и назад и в конечном счете закончит работу. Как с частицей в газе, если мы ее слегка подтолкнем, она потеряет очень мало энергии, но зато ее путь от одного конца до другого займет достаточное время. Если мы спешим и подтолкнем частицу сильно — потеряем массу энергии. То же будет с компьютером. Если мы терпеливы и двигаемся медленно, мы можем заставить компьютер работать почти без потери энергии, с потерей, даже меньшей, чем кТна один шаг — со сколь угодно малыми желаемыми потерями, — если располагаем достаточным временем. Но если вы спешите, вам приходится «транжирить» энергию, ясно, что энергия теряется на полное завершение вычислений компьютера в прямом порядке; потери энергии, умноженные на время, затраченное на выполнение вычислений, — величина постоянная.

Имея в виду эти возможности, давайте посмотрим, насколько малым можно сделать компьютер. Насколько велики будут размеры? Нам всем известно, что можно записать числа в двоичном базисе, как цепочки «битов», каждая цифра — единица или ноль. Каждый атом тоже можно занумеровать нулем или единицей, поэтому маленькой цепочки атомов будет достаточно для создания некоторого числа — один атом на каждый бит. (В действительности, так как атом может находиться более чем в двух состояниях, можно было бы использовать даже меньше атомов, но один на бит — вполне достаточно!) Итак, ради интеллектуального развлечения рассмотрим, можно ли построить компьютер, в котором записываются биты атомного размера, а бит, например, означает следующее: если спин атома направлен вверх, то это соответствует единице, а вниз — нулю. И тогда наш «транзистор», в котором в различных местах меняются биты, будет соответствовать некоторому взаимодействию между атомами, которые меняют свои состояния. Простейший пример — если что-то вроде 3-атомного взаимодействия будет фундаментальным элементом или схемой в таком компьютере. Очевидно, прибор не будет работать правильно, если мы сконструируем его в соответствии с законами, свойственными большим объектам. Мы должны использовать новые законы физики, квантово-механические законы, законы, присущие атомному движению (Рис. 8).

Поэтому нам следует задать вопрос, позволяют ли принципы квантовой механики расположить атомы в таком малом количестве, которое соответствует нескольким схемам в компьютере и которые будут работать в качестве компьютера? В принципе эти вопросы изучались, и такое расположение было найдено. Так как законы квантовой механики обратимы, нам нужно воспользоваться изобретением Беннета и Фредкина об обратимых логических схемах. При изучении квантово-механической ситуации было обнаружено, что квантовая механика не накладывает дополнительных ограничений на те условия, которые мистер Беннет получил из термодинамических соображений. Безусловно, существует ограничение, практическое ограничение — биты должны соответствовать размеру атома, а транзистор — 3–4 атомам. Используемая мной квантово-механическая схема содержит 3 атома. (Я не пытался записать биты на ядрах. Прежде чем говорить о чем-то другом, я подожду, пока технологические разработки доберутся до атомов!) Мы накладываем следующие ограничивающие условия: (а) ограничения размеров размерами атома; (b) условия на энергию, зависящие от времени, как получено Беннетом; и (с) особенности, которые я не упоминал, связанные со скоростью света, — нельзя посылать сигналы со скоростью, превышающей скорость света. Вот, собственно, и все физические ограничения на компьютеры, о которых мне известно.

Если мы каким-либо образом ухитримся построить компьютер атомного размера, это будет означать (Рис. 9),что его размер, линейный размер, в тысячу — десять тысяч раз меньше самого тонкого чипа, которым мы сейчас располагаем! Это соответствует тому, что объем компьютера составит одну стомиллиардную (10 – 11) от объема нынешних компьютеров, поскольку объем «транзистора» будет меньше в 10 – 11раз транзисторов сегодняшнего дня. Энергия, необходимая для одного включения, тоже будет приблизительно на одиннадцать порядков меньше энергии, требуемой для включения транзистора сегодня, а время, затрачиваемое на переходы, будет по крайней мере в десять тысяч раз меньше на каждый шаг вычислений. Таким образом, существует масса возможностей для усовершенствования компьютера, и я полагаюсь здесь на вас, практикующих специалистов, работа которых непосредственно связана с компьютерами.

Я, видимо, недооценил, насколько много времени занял у мистера Езава перевод моего доклада. На сегодняшний день я рассказал все, что заранее подготовил. Большое спасибо! Если у вас есть вопросы, я готов ответить на них.

Вопросы и ответы

Вопрос: Вы упомянули, что один бит информации можно сохранить в атоме. Интересно, можно ли сохранить тот же объем информации в одном кварке?

Ответ: Да. Но мы не можем контролировать кварки, и потому иметь с ними дело совершенно нереально. Вы могли бы подумать, что я рассказывал о вещах, не имеющих практического значения, но я так не думаю. Когда я говорю об атомах, я верю, что когда-нибудь мы будем способны контролировать их индивидуально. Но во взаимодействие кварков вовлечена слишком большая энергия — ими очень опасно манипулировать из-за радиоактивности и прочих вещей. А атомные энергии, о которых я говорил, вполне привычны для нас с точки зрения и химических, и электрических энергий, и их неисчислимое множество в реальной сфере; полагаю, что абсурдным это кажется только в данный момент.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Король Масок. Том 2

Романовский Борис Владимирович
2. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 2

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера

Волк 2: Лихие 90-е

Киров Никита
2. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 2: Лихие 90-е

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Изгой. Трилогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
8.45
рейтинг книги
Изгой. Трилогия

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!