Ракеты и полеты в космос
Шрифт:
Таким образом, характеристики ракеты А-4 были определены и в первом приближении обоснованы еще до того, как была закончена ракета А-3, не оправдавшая, как известно, возложенных на нее надежд. Поэтому, прежде чем продвинуть эту большую работу сколько-нибудь дальше, необходимо было довести ракету А-3 до приемлемого уровня. Практически же даже при сохранении прежних габаритов нужно было создавать новую ракету. Старое название (А-3) также не годилось, и новая ракета получила обозначение А-5.
Ракета А-5 имела первый вариант двигателя ракеты А-3 с большими графитовыми газовыми рулями и усовершенствованным корпусом, которому была придана почти такая же аэродинамическая форма, что и у более поздней ракеты А-4. И что важнее всего — ракета была снабжена принципиально новой системой управления. Фактически для нее было создано целых три системы управления, причем все они работали успешно. Первая ракета А-5 были запущена осенью 1938 года, но почему-то без системы управления, и только через год, когда уже шла война с Польшей, первая ракета А-5 взлетела с полным оборудованием
В одном из протоколов допроса сотрудников Пенемюнде разведывательной службой союзников сказано, что двигатель ракеты А-5 работал не на сжигании топлива, а генерировал газы за счет разложения концентрированной перекиси водорода. Это неверно. Ошибка, вероятно, объясняется тем, что протоколы нескольких допросов велись параллельно, и произошла путаница. Фактически же дело обстояло так. Ввиду отставания в разработке механизма управления и хвостовых стабилизаторов решить эту проблему было поручено профессору Гельмуту Вальтеру, на заводе которого в Киле было изготовлено несколько уменьшенных моделей ракеты А-5 диаметром 20 см, длиной 160 см и весом 27 кг. В баках таких моделей имелось 20 кг перекиси водорода, создававшей тягу порядка 120 кг в течение 15 секунд. Модели использовались для испытания хвостовых стабилизаторов различной формы. Эти мо-.дели и были приняты в ходе допроса за полноразмерные ракеты А-5.
Перекись водорода (H2O2) давно привлекала внимание некоторых экспериментаторов ракет как возможный заменитель жидкого кислорода. Но дальше предложений дело не шло, так как приобрести в готовом виде перекись водорода надлежащей концентрации было почти невозможно. Лишь немногие заводы могли производить 30% раствор, но и он в качестве заменителя кислорода был совершенно бесполезным.Чистая перекись водорода содержит 92,4% кислорода, но при разложении две ее молекулы обязательно переходят в две молекулы воды и одну молекулу кислорода (2H202=2Н2О+О2). Это означает, что половина кислорода, имеющегося в перекиси водорода, выделяется связанной в молекулах воды. Поэтому, например, в 30% растворе перекиси водорода выход свободного кислорода составит всего лишь около 14%. Такой раствор, разумеется, не может заменить чистый кислород. Перекись водорода неудобна еще и тем, что ее разложение происходит с выделением тепла. Так, 13,5% перекись водорода при разложении нагревается теоретически до 100° С. При концентрации в 64,5% вода раствора и вода, образованная из перекиси водорода, может перейти в пар. Если же разлагать химически чистую (100%) перекись водорода, то температура пара достигнет 940° С; для 80% перекиси водорода температура пара равнялась бы 465° С.
Метод промышленного получения 80% растворов переписи водорода был разработан только к 1936 году. Было также установлено, что очень сильными катализаторами процесса разложения перекиси водорода являются медь и ее сплавы, содержащие более 2% меди. Сохраняя крепкие растворы чистыми и применяя контейнеры из свободных от меди сплавов никеля или из чистого алюминия, можно избежать нежелательного разложения перекиси водорода. Быстрого же разложения перекиси водорода всегда можно добиться путем смешивания перекиси водорода с водным раствором перманганата калия или кальция. Если это происходит в ракетном двигателе, то в результате получается струя парогазовой смеси [22] .
22
О применении перекиси водорода в авиации см. Приложение I по ракетной авиации, а также статью Гельмута Вальтера в NACA-Technical Memorandum, № 1170. Кодовое название перекиси водорода «Т-штоф»; перманганаты назывались соответственно «Ц-штоф1» (перманганат кальция—«Ц-штоф-С»). Имеется несколько докладов германскому правительству о производстве «Т-штоф», обобщенных в «Журнале английского межпланетного общества» (т. XXIII, июль,- 1948). ( Прим. авт.)
К этому времени каждая мысль, каждая начерченная линия и каждое движение логарифмической линейки в Пенемюнде имели прямое или косвенное отношение к «большой ракете», той самой ракете, которая довольно преждевременно была названа А-4. Именно она позднее стала называться ракетой «Фау-2», которую союзники или, по крайней мере, европейские газеты, выходящие на английском языке, называли «ракетой Гитлера». В действительности же Гитлер даже не интересовался ею. За все время он только один раз видел, как разрабатываются ракеты. В марте 1939 года он был в Куммерсдорфе. Ему показали диаграммы и чертежи, а полковник Дорнбергер доложил о работе станции. Доктор фон Браун прочитал техническую лекцию, после чего Гитлера пригласили на испытательный
После ленча Гитлер уехал, сухо поблагодарив хозяев за показ. Специалистам по ракетам пришлось утешиться тем, что генерал Браухич, находившийся в свите Гитлера, выразил им свое удовлетворение. Геринг, нанесший такой же визит в Куммерсдорф неделей позже, был настолько очарован ракетами, что посоветовал строить ракетные двигатели для самолетов, дирижаблей, океанских лайнеров, поездов и автомашин, совершенно игнорируя их теоретическую и техническую осуществимость
Рис. 37. Ракета А-4 («Фау-2»). Слева—продольный разрез (на пусковом столе); справа вверху—разрез камеры сгорания (видны 18 распылительных форсунок в верхней части двигателя); в центре — распылительная форсунка в разрезе; внизу—сопло (вид сбоку и вид снизу) и графитовые газовые рули
Прошло еще четыре года после этих визитов, прежде чем разработка ракеты А-4 приблизилась к концу. Первые ракеты были изготовлены летом 1942 года. Для истории можно отметить, что первые семь ракет А-4 были почти на целую тонну тяжелее ракет А-4, запущенных в серийное производство позднее. В законченном виде ракета выглядела так, как показано на рис. 37.
Ракета А-4 состояла из четырех отсеков. Носовая часть представляла собой боевую головку весом около 1 т, сделанную из мягкой стали толщиной 6 мм и наполненную аматолом. Выбор этого взрывчатого вещества объяснялся его удивительно малой чувствительностью к теплу и ударам. Ниже боевой головки находился приборный отсек, в котором наряду с аппаратурой помещалось несколько стальных цилиндров со сжатым азотом, применявшимся главным образом для повышения давления в баке с горючим. Ниже приборного располагался топливный отсек — самая объемистая и тяжелая часть ракеты. При полной заправке на топливный отсек приходилось три четверти веса ракеты. Бак со спиртом помещался наверху; из него через центр бака с кислородом проходил трубопровод, подававший горючее в камеру сгорания. Пространство между топливными баками и внешней обшивкой ракеты, а также полости между обоими баками заполнялись стекловолокном. Заправка ракеты жидким кислородом производилась перед самым пуском, так как потери кислорода за счет испарения составляли 2 кг в минуту. Поэтому даже 20-минутный интервал между заправкой и пуском приводил к потере около 40 кг жидкого кислорода. Это считалось (и считается) допустимым, но более длительная задержка требует уже дозаправки бака с кислородом.
Самой важной новинкой в этой ракете было наличие турбонасосного агрегата для подачи компонентов топлива. В небольших ракетах проблема подачи жидких топлив в ракетный двигатель решалась путем наддува баков. Требуемое давление при этом составляло несколько более 21 атм. В большой же ракете такая система трудноприменима. Задача обеспечения давления для подачи топлива может быть выполнена в ней только специальными насосами.
Подобно газовым рулям в струе истекающих газов, топливный насос для ракет теоретически не был новинкой. Потребность в насосах возникла еще давно. Так, Годдард заявлял об этом в одном из своих первых патентов; постоянно говорил о проблеме топливных насосов и Оберт, но построить такой насос казалось почти невозможным, тем более, что он должен был выполнять ряд функций: подавать компоненты топлива, одним из которых являлся сжиженный газ, под давлением порядка 21 атм и перекачивать более 190 л топлива в секунду. Кроме того, он должен был быть достаточно простым по конструкции и очень легким, а в довершение всего насос должен был запускаться на полную мощность в течение очень короткого (6 секунд) промежутка времени. Единственным облегчением было то, что насосная система должна была работать не многим более 1 минуты.
Когда фон Браун излагал требования, предъявляемые к насосам, персоналу завода, выпускающего насосы, он невольно ожидал возражений, что подобные требования невыполнимы. Вместо этого все слушали молча, а когда начали выступать специалисты по насосам, оказалось, что требуемый насос напоминает один из видов пожарного насоса. Существующие образцы центробежных пожарных насосов и были положены в основу при проектировании ракетных топливных насосов.
Но, разумеется, любой насос нуждается в источнике энергии, то есть он должен чем-то приводиться в движение. Для этого были использованы концентрированная перекись водорода и раствор перманганата, соединяя которые можно было быстро получить определенное количество парогаза постоянной температуры. Агрегат турбонасоса, парогазогенератор для турбины и два небольших бака для перекиси водорода и перманганата калия помещались в одном отсеке с двигательной установкой. Отработанный парогаз, пройдя через турбину, все еще оставался горячим и мог совершить дополнительную работу. Поэтому его направляли в теплообменник, где он нагревал некоторое количество жидкого кислорода. Поступая обратно в бак, этот кислород создавал там небольшой наддув, что несколько облегчало работу турбонасосного агрегата и одновременно предупреждало сплющивание стенок бака, когда он становился пустым. Эту же работу в линии подачи топлива выполнял сжатый азот.