Чтение онлайн

на главную

Жанры

Расчеты конструктору
Шрифт:

Высота z2 = 80;

Примечание: Ось Z направлена в зенит.

Расчет:

Длина отрезка в пространстве:

L = sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))+((z1-z2)*(z1-z2));

Длина отрезка L = 70,71068;

Длина проекции отрезка на плоскость Y-Z:

Lyz = sqrt((y1-y2)*(y1-y2))+((z1-z2)*(z1-z2));

Длина

отрезка Lyz = 64,0312424;

L = sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))+((z1-z2)*(z1-z2));

Длина проекции отрезка на плоскость Х-Z:

Lxz = sqrt((x1-x2)*(x1-x2))+((z1-z2)*(z1-z2));

Длина отрезка Lxz = 58,309519;

Длина проекции отрезка на плоскость Х-Y:

Lxy = sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2));

Длина отрезка Lxy = 50;

Углы между проекцией отрезка на плоскости и осью:

Угол между осью Х-Х и проекцией отрезка на плоскость X-Y.

Uxy = arctan((y2-y1)/(x2-x1)); Uxy = 53,130102354…

Угол между осью Х-Х и проекцией отрезка на плоскость X-Z.

Uxz = arctan((z2-z1)/(x2-x1)); Uxz = 59,036243468…

Угол между осью Y-Y и проекцией отрезка на плоскость Y-Z.

Uyz = arctan((z2-z1)/(y2-y1)); Uyz = 51,340191746…

Определяем угол между плоскостью и отрезком в пространстве.

Угол между плоскостью X-Y и отрезком.

ULxy = arctan((z2-z1)/Lxy); ULxy = 45,0…

Угол между плоскостью X-Z и отрезком в пространстве.

ULxz = arctan((y2-y1)/Lxz); ULxz = 34,44990199…

Угол между плоскостью Y-Z и отрезком в пространстве.

ULyz = arctan((x2-x1)/Lyz); ULyz = 25,104090250…

Расчет линейной интерполяции.

Линейная интерполяция применяется при работе с табличными данными.

Из таблицы имеем две взаимосвязанных пары значений какой то функции.

Необходимо вычислить ординату при значении абсциссы близком взятой из таблицы пары абсцисс.

Например: Абсцисса x1 = 10; Ордината y1 = 20;

Абсцисса x2 = 90; Ордината y2 = 180;

Необходимо вычислить Ординату Yx при Абсциссе Хх = 50;

Примечание: Абсцисса Хх может также быть немного больше

или меньше крайних значений известных табличных Абсцисс.

Расчет: RF-01.

Yy = (((y2-y1)*(Хx-x1)) / (x2-x1))+y1; Yy = (((180-20)*(50-10)) / (90-10))+20;

Yy = ( 6400 / 80 )+20; Yy = 100;

Расчет центра масс.

Исходные данные:

Масса первого тела М1 = 40;

Масса второго тела М2 = 60;

От оси до центра массы первого тела Х1 = 20;

От оси до центра массы второго тела Х2 = 50;

Расчет:

От оси до центра массы системы двух тел:

Рассчитываем как моменты масс относительно Оси отсчета. RF-02/

Xx=((m1*x1)+(m2*x2))/(m1+m2); Xx=((40 * 20 )+( 60 * 50 ))/( 40 + 60 ); Хх = 38 …

Суммарная масса системы двух тел:

M=m1+m2; M= 40 + 60; M= 100 …

Расчет геометрии многогранника.

Многогранник:

Описанный диаметр d.

Вписанный диаметр dv.

Ширина грани L.

Угол между вершинами U.

Исходные данные:

Описанный диаметр d = 100…

Вписанный диаметр dv = 80,90169943749474.

Число граней многогранника n = 5…

Расчет:

Половина угла на грань:

Ur = 180 / n; Ur = 180 / 5; Ur = 36…

Расчет при известном описанном диаметре.

Радиус описанного диаметра:

R=d / 2; R=100 / 2; R= 50…

Радиус вписанной окружности:

Rv=(d/2)*cos( Ur ); Rv= 50 * cos( 36 );

Rv= 40,45084972…

Вписанный диаметр:

.dv=Rv+Rv; .dv= 40,45084972 + 40,45084972;

.dv= 80,90169944…

Максимальный размер между вершинами:

X = d * ( cos ( 90 / n ))…

Ширина грани:

Sg= 2*(sqrt( R * R – Rv * Rv )); Sg= 2*(sqrt( 50 * 50 – 40,45084972 * 40,45084972 ));

Sg= 58,77852523…

Площадь многогранника:

S= ( Sg * Rv * n ) / 2; S= ( 58,77852523 * 40,45084972 * 5 ) / 2; S= 5944,103227…

Расчет геометрии коробовой кривой ( овала ).

Коробовая кривая – этой кривой можно с достаточной точностью заменить овальную кривую.

К примеру с помощью программы расчета геометрии коробовой кривой можно рассчитать геометрические размеры обжатого уплотнительного круглого резинового кольца.

Построение:

Задано:

Большая полуось ОА… ОА = ОP..

Малая полуось ОВ.

Алгоритм Расчета:

ОА = ОP.. Построением..

Построением: РВ = ОА – ОВ; ТВ = РВ..

АВ =sqrt( АО*АО + ОВ*ОВ ); АТ = АВ – ТВ; ХТ = АТ / 2;

Из подобия треугольников: АХ / АО = АE / АВ; отсюда:

АE = АХ*АВ / АО; аналогично: ВК = ( АХ + ВТ )* АВ / ВО;

ОE = ОА – АE; ОК = ВК – ОВ; ХВ = ХТ + ТВ = AX + BT;

Для расчета площади сечения коробовой кривой :

Большой радиус Rb = КВ; Зная стороны ВК и ХВ – находим угол сектора « W ».

Зная радиус Rb и угол сектора « W » – найдем площадь сектора.

Зная стороны ОК и ОE прямоугольного треугольника – найдем его площадь

Поделиться:
Популярные книги

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Мимик нового Мира 3

Северный Лис
2. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 3

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Совок 4

Агарев Вадим
4. Совок
Фантастика:
попаданцы
альтернативная история
6.29
рейтинг книги
Совок 4

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Наизнанку

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Наизнанку

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Путь Шамана. Шаг 6: Все только начинается

Маханенко Василий Михайлович
6. Мир Барлионы
Фантастика:
фэнтези
рпг
попаданцы
9.14
рейтинг книги
Путь Шамана. Шаг 6: Все только начинается

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный