Расплетая радугу: наука, заблуждения и тяга к чудесам
Шрифт:
«Нейтралистская» школа мысли, ассоциируемая с выдающимся японским генетиком Мото Кимурой, полагает, что полезные гены одинаково полезны в многообразии различных форм. Это решительно не означает, что они бесполезны, только то, что различные формы одинаково хороши в том, что они делают. Если вы представите гены как записи их рецептов словами, альтернативные формы гена можно представить как те же слова, написанные различными шрифтами: значение то же самое, и продукт рецепта выйдет тот же. Генетические изменения, «мутации», которые не делают различий, «не замечаются» естественным отбором. С точки зрения различий, которые они создают в жизни животного, они не являются мутациями вообще, но они — потенциально полезные мутации с точки зрения судебного эксперта. Популяция получается обладающей большим разнообразием в таком локусе (позиции на хромосоме), и этот вид разнообразия может в принципе быть использован для фингерпринтинга.
Другая теория вариаций, противоположная нейтральной теории Кимуры, полагает, что различные
Однако в наших судебных целях имеет значение только то, что существуют изменчивые участки генома. Каким бы ни был вердикт в дебатах о том, являются ли полезные кусочки генома изменчивыми, в любом случае, есть много других участков генома, которые даже не читаются или никогда не транслируются в соответствующие им белки. Действительно, удивительно высокая доля наших генов, кажется, не делают вообще ничего. Поэтому они могут варьировать, что делает их превосходным материалом фингерпринтинга ДНК.
Как будто чтобы подтвердить факт, что значительная доля ДНК не делает ничего полезного, громадное количество ДНК в клетках различного рода организмов чудовищно изменчива. Так как информация ДНК является цифровой, мы можем измерить ее в тех же единицах, которых мы измеряем компьютерную информацию. Одного бита информации достаточно, чтобы определить одно да/нет решение: 1 или 0, истинно или ложно.
Компьютер, на котором я это пишу это, имеет 256 мегабит (32 мегабайта) оперативной памяти. (Первый компьютер, который у меня был, представлял собой большую коробку, но имел менее одной пятитысячной этой емкости памяти.) Аналогичная фундаментальная единица ДНК — нуклеиновое основание. Поскольку есть 4 возможных основания, информация, содержащаяся в каждом, равноценна 2 битам. Обычная кишечная бактерия Escherichia coli обладает геномом в 4 мегаоснований или 8 мегабит. У гребенчатого тритона, Triturus cristatus — 40 000 мегабит. 5 000-кратное отношение гребенчатого тритона и бактерии примерно такое же, как между моим нынешним компьютером и моим первым. У нас, людей, 3 000 мегаоснований или 6 000 мегабит. Это в 750 раз больше, чем у бактерии (что тешит наше тщеславие), но как мы должны расценивать тритона, превосходящего нас шестикратно? Мы предпочли бы думать, что размер генома не строго пропорционален тому, что он делает: по-видимому, довольно много этой ДНК тритона не делает ничего. Это, конечно, верно. Это также верно для большинства нашей ДНК. Мы знаем из других свидетельств, что из этих 3 000 мегаоснований человеческого генома лишь приблизительно 2 процента фактически используется для кодирования синтеза белка. Остальное часто называют мусорной ДНК. По-видимому, у гребенчатого тритона еще более высокий процент мусорной ДНК. У других тритонов — нет.
Излишек неиспользуемой ДНК относится к различным категориям. Часть ее похожа на реальную генетическую информацию, и, вероятно, представляет собой старые, ныне не работающие гены или устаревшие копии все еще используемых генов. Эти псевдогены имели бы смысл, если бы они читались и транслировались. Но они не читаются и не транслируются. Жесткие диски на компьютерах обычно содержат аналогичный мусор: старые копии незавершенной работы, пространство сверхоперативной памяти, используемое компьютером для временных операций, и так далее. Мы, пользователи, не видим этот мусор, потому что наши компьютеры показывают нам только те части диска, о которых мы должны знать. Но если Вы копнете глубже и прочитаете фактическую информацию на диске, байт байтом, то Вы увидите мусор, и большая его часть будет иметь некоторый смысл. Есть, вероятно, множество разрозненных фрагментов этой самой главы, усеивающих мой жесткий диск в данное время, хотя есть только одна «официальная» копия, о которой компьютер мне сообщает (плюс предусмотрительная резервная копия).
В добавок к мусорной ДНК, которая моглабы читаться, но не читается, есть большое количество мусорной ДНК, которая не только не читается, но и не имела
Так или иначе, каковы бы ни были причины, мусорная ДНК имеется, и в потрясающих количествах. Поскольку она не используется, она свободна меняться. Полезные гены, как мы видели, строго ограничены в их свободе изменяться. Большинство изменений (мутации) делает работу генов менее эффективной, животное умирает, и изменение не передается. Это является сутью дарвиновского естественного отбора. Но мутации в мусорной ДНК (главным образом изменения количества повторений в данном участке) не замечаются естественным отбором. Так, если мы оглянем популяцию, мы обнаружим большинство изменений, полезных для фингерпринтинга, в мусорных участках. Как мы сейчас увидим, тандемные повторы особенно полезны, потому что они разнятся в отношении числа повторов, простое свойство, которое легко измерить.
Если бы не это, судебный генетик должен был бы проверить точную последовательность оснований в нашем типовом участке. Это можно сделать, но секвенирование ДНК отнимает много времени. Тандемные повторы позволяют нам использовать хитроумные сокращенные методы, такие как обнаружил Алек Джеффрейс из Университета Лестера, по праву считающийся отцом фингерпринтинга ДНК (и теперь он — сэр Алек). У разных людей в конкретных местах — разное число тандемных повторов. У меня может быть 147 повторов данного фрагмента бессмыслицы, там где у Вас 84 повтора того же фрагмента бессмыслицы в соответствующем месте вашего генома. В другом участке, у меня может быть 24 повтора определенного фрагмента бессмыслицы при 38 повторах у Вас. У каждого из нас есть характерный фингерпринт, состоящий из ряда чисел. Каждое из этих чисел в нашем фингерпринте представляет собой количество повторов определенного фрагмента бессмыслицы в нашем геноме.
Мы получаем наши тандемные повторы от наших родителей. У каждого из нас 46 хромосом, 23 от отца, и 23 гомологичных, то есть соответствующих, хромосомы от матери. Эти хромосомы достаются нам со всеми их тандемными повторами. Ваш отец получил свои 46 хромосом от Ваших бабушки и дедушки по отцовской линии, но он не передал их вам в их полном объеме. Каждая из хромосом его матери была выровнена с ее отцовским коллегой, и они обменялись кусочками, прежде чем результирующая хромосома была помещена в сперматозоид, который помог создать вас. Каждый сперматозоид и каждая яйцеклетка уникальны, потому что они — различные комбинации материнских и отцовских хромосом. Процесс смешивания затрагивает как участки тандемных повторов, так и значащие участки хромосом. Поэтому наши характерные числа тандемных повторов унаследованы почти так же, как унаследованы цвет наших глаз и курчавость волос. С той разницей, что, тогда как цвет наших глаз обусловлен своего рода общим решением наших отцовских и материнских генов, числа наших тандемных повторов являются свойствами самих хромосом и могут поэтому быть измерены отдельно для отцовских и материнских хромосом. В любом отдельном участке тандемного повтора у каждого из нас есть два варианта текста: число повторов отцовской хромосомы и число повторов материнской. Время от времени хромосомы мутируют — испытывают случайное изменение — в числах своих тандемных повторов. Или определенный тандемный участок может быть раздроблен хромосомным кроссинговером. Вот почему есть вариации в числах тандемных повторов в популяции. Красота чисел тандемных повторов состоит в том, что их легко измерить. Вам не нужно утруждаться детальным секвенированием закодированных оснований ДНК. Вы делаете нечто похожее на их взвешивание. Или, если взять другую столь же уместную аналогию, Вы разворачиваете их как цветные полосы от призмы. Я объясню один способ сделать это.
Сначала Вам нужно сделать некоторые приготовления. Вы делаете так называемый ДНК-зонд, который представляет собой короткую последовательность ДНК, точно соответствующую рассматриваемой последовательности бессмыслицы — длиной приблизительно до 20 нуклеотидных оснований. Это несложно сделать в настоящее время. Есть несколько методов. Вы можете даже купить готовую машинку, которая сооздает любые короткие последовательности ДНК, так же как Вы можете купить клавиатуру, чтобы выбивать любую желаемую цепочку букв на бумажной ленте. Снабжая синтезирующую машинку радиоактивным сырьем, вы делаете радиоактивными сами зонды, и таким образом их «маркируете». Это позволяет позже легко обнаружить зонды снова, поскольку естественная ДНК не радиоактивна, поэтому их легко отличить друг от друга.