Рассказ предка. Паломничество к истокам жизни
Шрифт:
В недавно срубленном дереве внешнее кольцо соответствует современности. А о прошлом можно судить, отсчитывая кольца внутрь. Поэтому с помощью рисунка годичных колец современных деревьев, для которых известна дата вырубки, можно проставлять абсолютные даты для других деревьев. Обнаруживая наложения – то есть рисунки вблизи сердцевины молодого дерева, соответствующие рисунку внешних слоев старшего дерева, – можно датировать кольца старших деревьев. Последовательно соединяя такие наложения, мы можем точно датировать даже очень старые деревья – теоретически даже ископаемый лес Аризоны. Для этого нужен непрерывный ряд промежуточных звеньев. Благодаря технике наложения можно составить каталог признаков и пользоваться им для датирования образцов древесины, превосходящих по возрасту самые старые деревья, которые мы видели живыми. Кстати, изменчивость толщины колец можно использовать не только для датирования, но и для реконструкции климатических и экологических условий, относящихся ко временам, когда метеорологических записей никто не вел.
Разрешающая
Другой пример, с которым мы познакомились в “Эпилоге к рассказу Эпиорниса”, – палеомагнитное датирование. Как мы знаем, магнитное поле Земли время от времени внезапно претерпевает инверсию. Северный магнитный полюс на несколько тысяч лет становится Южным. Затем они снова меняются местами. За последние 10 млн лет это произошло 282 раза. Хотя я употребил слово “внезапный”, внезапны такие события лишь в геологическом масштабе. Вот было бы весело, если бы полюса, меняясь местами, разворачивали все самолеты и корабли в противоположную сторону. Однако на самом деле “переключение” занимает несколько тысяч лет и представляет собой очень сложный процесс. Следует заметить, что Северный магнитный полюс в любом случае редко совпадает с географическим Северным полюсом (вокруг которого вращается Земля). Обычно он блуждает по полярной области. В настоящее время Северный магнитный полюс расположен возле острова Батерст на севере Канады, примерно в 2 тыс. км от географического Северного полюса. В период “переключения” наступает время “междуцарствия”: возникают помехи, иногда приводящие к появлению нескольких магнитных северных или южных полюсов. Когда поле стабилизируется, иногда оказывается, что бывший Северный магнитный полюс оказался возле географического Южного полюса, и наоборот. Затем наступает период стабильности, когда магнитные полюса блуждают вокруг географических. Это может продолжаться в течение миллиона лет, пока не придет время для следующего “переключения”.
В геологических масштабах тысяча лет – почти ничто. Время, потраченное на “переключение”, незначительно по сравнению со временем вблизи одного из географических полюсов. Природа ведет автоматическую запись таких событий. Некоторые минералы в расплавленной вулканической породе ведут себя как крошечные компасы. Когда порода остывает, “стрелки” превращаются в запись магнитного поля Земли в момент отвердевания (благодаря некоторым другим процессам явление палеомагнетизма можно наблюдать и в осадочных породах). После “переключения” “стрелки” начинают указывать противоположное направление. Это напоминает историю с годичными кольцами – однако здесь интервал составляет не год, а примерно миллион лет. Узоры можно сопоставлять, выстраивая непрерывную хронологию магнитных переключений. С помощью этого метода нельзя определить абсолютный возраст, потому что, в отличие от годичных колец, линии откладываются через разные промежутки времени. Однако мы по-прежнему можем собирать характерные узоры из разных мест. И если для одного из таких мест доступен какой-либо метод абсолютного датирования (см. ниже), узоры магнитных линий можно использовать как код Парсонса, отыскивая тот же временной интервал в других местах. Как и в случае с годичными кольцами и другими методами датирования, картина складывается из фрагментов, собранных в различных местах.
Годичные кольца хороши для датирования относительно молодых образцов. Датировки давних событий неизбежно окажутся менее точными, и их устанавливают с помощью радиоактивного распада.
Все вещества состоят из атомов. Существует более 100 видов атомов, соответствующих числу химических элементов. Большинство веществ представляют собой не чистые элементы, а соединения, то есть два или более атомов различных элементов, связанных вместе, как в карбонате кальция, поваренной соли или угарном газе. Связывание атомов в соединения происходит благодаря электронам, которые представляют собой крошечные частицы, вращающиеся по орбите (на самом деле это просто метафора: реальное их поведение гораздо сложнее) вокруг ядра атома. Ядро огромно по сравнению с электроном, но чрезвычайно мало по сравнению с орбитой электрона. Наша рука, состоящая главным образом из пустоты, встречает сопротивление, ударяясь о кусок железа, тоже состоящий главным образом из пустоты. Причина в том, что силы, связывающие атомы в двух твердых телах, при взаимодействии не дают им проходить друг сквозь друга. Как следствие, железо или камень кажутся нам монолитными – а мозг услужливо помогает в оформлении этой иллюзии.
Давно известно, что химическое соединение можно разъединить
Протоны и нейтроны имеют примерно одинаковый размер, они гораздо больше электрона. В отличие от нейтрона, электрически нейтрального, каждый протон имеет одну единицу электрического заряда (который произвольно считается положительным). Этот заряд уравновешивает отрицательный заряд одного электрона, который находится на орбите вокруг ядра. Протон может превратиться в нейтрон, если поглотит электрон, отрицательный заряд которого нейтрализует положительный заряд протона. Нейтрон, в свою очередь, может превратиться в протон, избавившись от единицы отрицательного заряда – электрона. Такие преобразования являются примерами ядерных реакций. Химические реакции не затрагивают ядро.
Ядерные реакции приводят к его изменениям. Обычно они сопровождаются гораздо более значительным обменом энергии, чем химические реакции. Поэтому ядерное оружие при равной массе разрушительнее обычных (химических) взрывчатых веществ. Попытки алхимиков превратить один химический элемент в другой провалились лишь потому, что они пытались сделать это с помощью химических, а не ядерных реакций.
У каждого химического элемента определенное число протонов в ядре атома и равное ему число электронов на орбите вокруг ядра: 1 – у водорода, 2 – у гелия, 6 – у углерода, 11 – у натрия, 26 – у железа, 82 – у свинца, 92 – у урана. Атомное число в значительной степени определяет свойства элемента. Нейтроны почти не влияют на химические свойства элемента, однако определяют его массу и участвуют в ядерных реакциях.
Число нейтронов в ядре обычно примерно равно числу протонов (или немного больше). В отличие от числа протонов, которое фиксировано для каждого элемента, число нейтронов варьирует. Обычный углерод имеет шесть протонов и шесть нейтронов, что в сумме дает массовое число 12 (массой электронов можно пренебречь, а нейтрон весит примерно столько же, сколько протон). Поэтому его называют углеродом-12.
У углерода-13 один дополнительный нейтрон, а у углерода-14 их два. При этом у каждого по шесть протонов. Такие “версии” химического элемента называются изотопами. Причина, по которой изотопы называются углеродом, в том, что у них одинаковое атомное число (6) и, следовательно, одинаковые химические свойства. Если бы ядерные реакции были открыты раньше химических, возможно, изотопы назывались бы по-разному. Иногда изотопы ведут себя настолько странно, что вполне заслуживают индивидуальных названий. У обычного водорода нет нейтронов. Водород-2, который имеет один протон и один нейтрон, называется дейтерием, а водород-3 с одним протоном и двумя нейтронами – тритием. Все они в химическом отношении ведут себя как водород. Например, дейтерий при взаимодействии с кислородом образует так называемую тяжелую воду, которую применяют в производстве водородных бомб.
Таким образом, изотопы различаются лишь числом нейтронов. Некоторые изотопы нестабильны: это значит, что их ядро с высокой вероятностью может в любой момент превратиться в ядро другого типа. Другие изотопы стабильны: вероятность превращения их ядер близка к нулю. Нестабильные изотопы также называют радиоактивными. У свинца 4 стабильных изотопа и 25 описанных нестабильных изотопов. У урана – очень тяжелого металла – нестабильны (то есть радиоактивны) все изотопы.
Радиоактивность – вот ключ к абсолютному датированию горных пород и окаменелостей. Как происходит превращение нестабильных радиоактивных элементов? Это может происходить по-разному, но есть два основных способа: альфа-распад и бета-распад. При альфа-распаде ядро теряет альфа-частицу, состоящую из двух протонов и двух нейтронов. В результате массовое число уменьшается на четыре единицы, атомное – на две (соответствующие двум потерянным протонам). Элемент превращается в элемент, имеющий на два протона меньше. Так, уран-238 (92 протона и 146 нейтронов) превращается в торий-234 (90 протонов и 144 нейтрона).