Рассказ предка. Паломничество к истокам жизни
Шрифт:
Данные митохондриальной ДНК поддерживают теорию колебаний уровня озера и более старого озера Танганьика. Хотя Танганьика – глубокое рифтовое озеро, а не мелкий водоем, как Виктория, есть данные, что долгое время его уровень был гораздо ниже нынешнего. Тогда озеро было разделено на три. Генетические данные предполагают раннее разделение цихлид на три группы, предположительно по одной на каждое из небольших озер. После формирования современного озера каждая группа претерпела дальнейшее видообразование.
Эрик Верхейен, Вальтер Зальцбургер, Йос Снукс и Аксель Майер изучили митохондриальную ДНК хаплохромисовых цихлид из озера Виктория, связанные с ним реки, а также озера-спутники Киву, Эдвард, Джордж, Альберт и другие. Исследование показало, что в озере Виктория и соседних мелких озерах обитает монофилетическая группа видов, которая
Диаграмму, построенную Верхейеном и его коллегами (см. вкладку), легко истолковать неверно. Очень заманчиво представить, что кружки обозначают виды, сконцентрированные вокруг родительского вида, как на генеалогической схеме. Или что они обозначают мелкие озера, группирующиеся вокруг крупных, как на карте маршрутов авиалиний. Но на самом деле на диаграмме другое. Кружки обозначают не виды и не географические точки. Каждый из них – гаплотип, “ген”, определенный участок ДНК, которым конкретная рыба обладает или не обладает.
Каждый “ген”, таким образом, представлен одним кружком. Размер кружков отражает общее число особей, имеющих данный “ген” и обитающих во всех обследованных озерах и реках. Обратите внимание: видовая принадлежность здесь не учитывается. Маленькие кружки обозначают “ген”, носителем которого является всего одна особь. “Ген” № 25 обнаружен у 34 особей. Число точек на линии, соединяющей два кружка, отражает минимальное количество мутаций, необходимых для перехода от одного к другому. Как вы помните из “Рассказа Гиббона”, это соответствует одной из версий метода парсимонии. Маленькие черные точки обозначают промежуточные “гены”, не найденные у реальных рыб, но предположительно существовавшие. Представленное древо – неукорененное и не отражает направление эволюции.
Географические данные представлены на диаграмме только в виде цветовых обозначений. Каждый кружок представляет собой круговую (секторную) диаграмму, которая указывает, сколько раз интересующий нас “ген” встречается в каждом из обследованных озер или рек (смотри цветовой ключ внизу диаграммы). “Гены” №№ 12, 47, 7, 56 найдены лишь в озере Киву (полностью красные кружки). “Гены” №№ 77, 92 обнаружены лишь в озере Виктория (полностью синие). “Ген” № 25, самый многочисленный из всех, встречается в основном в Киву, но также широко представлен в “озерах Уганды” (группа малых озер к западу от озера Виктория). Диаграмма показывает, что “ген” № 25 также найден в реке Виктория-Нил, в самом озере Виктория и в озерах Эдвард и Джордж (эти два соседних водоема объединены для облегчения расчетов). Не забывайте, что диаграмма не содержит информации о видах! Синий сектор кружка, обозначающего “ген” № 25, указывает, что он обнаружен у двух особей из озера Виктория. Мы не знаем, относятся ли эти особи к одному виду. Также нам неизвестно, принадлежат ли они к тому же виду, что и обладатели этого “гена” из Киву. Суть не в этом. Эта диаграмма должна очень понравиться приверженцам теории “эгоистичного гена”.
Оказывается, источником видового разнообразия является небольшое озеро Киву. Генетические данные указывают, что озеро Виктория было заселено хаплохромисовыми цихлидами в результате двух волн миграции из Киву. Пересыхание 15 тыс. лет назад никоим образом не уничтожило видовое разнообразие, а, возможно, даже увеличило его: бассейн озера Виктория распался на ряд озер. Что касается древних популяций цихлид в самом Киву (сегодня там обитает 26 видов, включая 15 эндемичных хаплохромисов), то генетические данные указывают на то, что они приплыли из танзанийских рек.
Эта работа – лишь начало. И страшно, и здорово представить, какие результаты мы можем получить, применив
Рассказ Слепой пещерной рыбы
В пещерах, где условия жизни сильно отличаются от обычных, обитают животные разных видов, включая плоских червей, насекомых, пресноводных рачков, саламандр и рыб. Все они независимо претерпели сходные эволюционные изменения. Некоторые из них кажутся конструктивными: отсроченное размножение; немногочисленные, однако крупные, яйца; увеличенная продолжительность жизни и так далее. В качестве компенсации бесполезных в темноте глаз пещерные животные приобрели повышенную чувствительность к запаху и вкусу. У многих из них теперь длинные чувствительные усики, а рыбы обзавелись усовершенствованной боковой линией (орган восприятия давления, ощущения которого мы не можем понять, – но для рыбы он очень важен). Другие изменения принято считать регрессивными. Пещерные обитатели нередко утрачивают глаза и пигментацию кожи.
Слепая мексиканская тетра (Astyanax mexicanus, также известная как A. fasciatus) особенно интересна тем, что разные ее популяции в пределах одного вида независимо заселили пещеры через ручьи и очень быстро претерпели сходные регрессивные изменения, связанные с жизнью в пещерах. Эти изменения можно сравнивать с признаками их родственников того же вида, живущих на свету. Мексиканские слепые пещерные рыбы обитают только в мексиканских пещерах – в основном известняковых, расположенных в одной долине. Когда-то каждую популяцию этих рыб выделяли в самостоятельный вид. Теперь их считают формами одного вида, Astyanax mexicanus, который распространен в наземных водоемах от Мексики до Техаса. Слепая форма найдена в 29 пещерах. Судя по всему, представители по крайней мере некоторых из этих пещерных популяций приобрели рудиментарные глаза вместе с белой окраской независимо: живущие на поверхности тетры много раз заселяли пещеры, всякий раз утрачивая глаза и пигментацию кожи.
Интересно, что некоторые популяции, по всей вероятности, жили в пещерах дольше, чем другие. Это видно по тому, насколько далеко они ушли в эволюции “пещерных” признаков. Крайний случай обнаружен в пещере Пачон, где, как считается, обитает самая древняя популяция пещерных рыб. На другом краю диапазона находится пещера Микос. Обитающая там популяция почти не изменилась по сравнению с обычной, живущей на поверхности формой. При этом ни одна из пещерных популяций не могла жить там особенно долго, потому что это южноамериканский вид, попавший в Мексику не раньше формирования Панамского перешейка. А это произошло 3 млн лет назад (Великий межамериканский обмен). Я предполагаю, что пещерные популяции тетры гораздо моложе.
Легко понять, почему обитателям пещер не нужны глаза. Но не так просто понять, почему при условии, что у их недавних предков были нормальные функциональные глаза, пещерная рыба старается поскорее от них избавиться. Ведь всегда есть вероятность, пусть небольшая, что рыб вынесет течением из пещеры. Разве не разумно сберечь глаза – на всякий случай? Но эволюция действует не так. Создание глаз, как и чего угодно, не бывает бесплатным. Те рыбы, которые направляют ресурсы в какой-нибудь другой сегмент “экономики” своего тела, получат преимущество перед конкурентами, сохраняющими полноценные глаза [86] . Если вероятность того, что глаза понадобятся когда-нибудь, слишком мала по сравнению с экономическими затратами на их содержание, то глаза исчезают. Когда дело касается естественного отбора, важны и небольшие преимущества. Некоторые биологи не принимают экономические вопросы во внимание. Им достаточно сослаться на накопление случайных изменений в процессе развития глаза, которые естественным отбором не “штрафуются”, потому что не имеют значения. По их мнению, способов быть слепым гораздо больше, чем способом быть зрячим – и поэтому случайные изменения по закону вероятности приводят к слепоте.
86
Глаза могут стать особенно дорогим удовольствием в том случае, если в них попадет инфекция. Возможно, поэтому кроты, живущие в земле, сократили их размер до минимального.