Рассказы о математиках
Шрифт:
В расцвете творческого гения ученый изобрел счетную машину (арифмометр) и механизм для приближенного интегрирования.
В своем учении «о всеобщей характеристике» Лейбниц заложил первые кирпичи современной математической логики, которая в настоящее время развилась в стройную, далеко идущую науку.
Христиан Гюйгенс (1629–1695)
Христиан Гюйгенс — выдающийся нидерландский математик и физик — родился в Гааге в семье всесторонне образованного писателя и политического деятеля Константина Гюйгенса. Уже в раннем детстве Христиан обнаруживает
В восемь лет Христиан усвоил четыре действия арифметики, хорошо изучил латинский язык и свободное время посвящал пению. Когда Христиану исполнилось десять лет, он увлекся изучением латинского стихосложения и игрой на скрипке. Одиннадцатилетним подростком он свободно играл на лютне. К двенадцатому году своей жизни он твердо усвоил законы логики и свободно применял их в своих рассуждениях и доказательствах.
Об успехах Христиана в то время можно судить по письмам учителя Генриха Бруно к отцу Гюйгенса. Так, в одном из писем он сообщает о своем четырнадцатилетием воспитаннике: «Я признаюсь, что Христиана надо назвать чудом среди мальчиков… Он развертывает свои способности в области механики и конструкций, делает машины удивительные, но вряд ли нужные».
Из приведенной выдержки видно, что Бруно не слишком поощрял занятия Христиана по изготовлению машин, тем не менее в этом направлении Христиан сделал очень многое, в частности сконструировал для себя токарный станок, которым впоследствии долго пользовался.
С 14 до 16 лет Христиан с увлечением занимался математикой по программе и учебнику, составленным специально для него профессором Франциском Схоутеном, автором трактата о конических сечениях и нескольких книг «Математические упражнения».
В результате этих занятий шестнадцатилетний Христиан хорошо овладел «Арифметикой» Диофанта и «Геометрией» Декарта. Познакомился со всеми оригинальными задачами на геометрические места Паппа Александрийского и с задачами на отыскание максимумов и минимумов по работам Пьера Ферма.
В 16 лет Христиан стал студентом Лейденского университета. В университете он изучал юридические науки и математику. Из математики он самостоятельно проштудировал бессмертные произведения Архимеда и «Конические сечения» Аполлония.
При изучении механики Стевина он столкнулся с утверждением, что фигура равновесия материальной нити, свободно подвешенной между двумя точками, есть кривая — парабола. Гюйгенс устанавливает, что это утверждение неправильно, и доказывает, что в общем случае этой фигурой будет так называемая цепная линия.
Профессор Схоутен, руководивший математическими занятиями Христиана, посылает первые научные работы молодого математика своему другу Декарту на отзыв. Декарт с большой похвалой отозвался о работах Гюйгенса. Он писал Схоутену, что Гюйгенс со временем станет выдающимся ученым.
Прошло еще несколько лет, и предсказание великого Декарта сбылось. Христиан Гюйгенс удивил мир своими замечательными открытиями и изобретениями.
Любимым ученым Христиана Гюйгенса был Архимед,
Известно, что в трактате «Измерение круга» Архимед дал довольно точное значение числа?. Согласно вычислениям Архимеда, значение числа находится в границах:
Этот результат Архимед получил при вычислении периметра 96-угольника. Гюйгенс написал свой трактат «О квадратуре круга», в котором развил идеи Архимеда. Гюйгенс предложил более эффективный метод для приближенного вычисления числа, чем метод Архимеда. Так, результат, полученный Архимедом из рассмотрения 96-угольника, Гюйгенс получает из рассмотрения периметров 12-угольника и 6-угольника.
Еще на пять лет ранее двадцатилетний Гюйгенс под влиянием Архимедовой книги «О плавающих телах» написал свой трактат «О теории плавания тел», который по существу также явился дальнейшим развитием идей гениального Архимеда.
В расцвете своей научной деятельности Гюйгенс опубликовал еще одно математическое сочинение, посвященное молодой тогда науке — теории вероятностей. Тогда Гюйгенсу было 28 лет.
Научное творчество Гюйгенса не ограничивается одной только математикой. Он прославил свое имя также глубокими работами в области механики и астрономии. Так, при помощи превосходных рефракторов собственной конструкции и изготовления он открывает кольцо Сатурна и исследует его.
Эти его наблюдения и выводы описаны Гюйгенсом в работе «Система Сатурна». В ней ученый подчеркнул свое признание гелиоцентрической системы мира. Здесь же Гюйгенс дал первое описание туманности в созвездии Ориона и сообщил о полосах на поверхностях Юпитера и Марса.
В области практической механики изобретает знаменитые часы с маятником и пишет по этому вопросу большое сочинение (в 4 томах).
Последние два открытия принесли голландскому ученому особенно большую славу и сделали его европейской знаменитостью. Тогда Гюйгенсу не было еще и 30 лет.
Опубликованные работы Гюйгенса составляют 22 тома. Из них первые 10 томов включают переписку, а остальные 12 посвящаются математике, механике, оптике, астрономии.
Алексис Клеро (1713–1765)
Вызывает удивление яркое математическое дарование знаменитого французского математика Алексиса Клода Клеро. Невероятно, но факт, что юный Клеро уже к 12 годам сложился как ученый. В этом возрасте он написал солидную работу, посвященную исследованию алгебраических кривых четвертого порядка. Она была напечатана в сборнике Берлинской академии наук.
Далее молодой Клеро занялся изучением некоторых свойств так называемых линий двоякой кривизны. Если на прямоугольном листе бумаги провести диагональ и затем этот лист свернуть в цилиндр, то упомянутая диагональ превратится в так называемую «винтовую линию». Винтовая линия является примером линии двоякой кривизны, т. е. линии, которая располагается не на плоскости, а в пространстве. Вот о таких линиях шестнадцатилетний Клеро и написал свое новое исследование, давшее ему славу знаменитого математика.