Рассказы об электричестве
Шрифт:
Элемент Бунзена приняли «на ура» не только лаборатории физики, но и первые электротехнические предприятия по гальванопластике, речь о которых впереди. И это несмотря на то, что при работе элемент выделял немало удушливых паров азотной кислоты. Правда, Иоганн Поггендорф заменил азотную кислоту хромовой, не выделявшей вредных испарений. Но производство хромовой кислоты было довольно дорогим делом.
Изобретатели старались вовсю. На страницах научных журналов одно за другим появлялись описания все новых и новых элементов. Ими занимались специалисты, ими занимались любители, ими занимались… В качестве курьеза можно упомянуть, что последний французский император Наполеон Третий, прежде чем навсегда подарить свою корону Республике, «осчастливил» мир тоже конструкцией двух элементов, обладавших некоторой оригинальностью.
Впрочем, во второй половине XIX столетия химические источники тока стали изготавливать в специальных мастерских. Главный их потребитель —
Можно рассказать еще о многих более или менее удачных попытках изобретательства. Наибольший успех выпал на долю парижского химика Жоржа Лекланше. Он наполнил глиняную банку смесью перекиси марганца с кусочками угля из газовых реторт и поместил туда же прямоугольную угольную призму, которая должна была служить положительным электродом. Эта система заливалась сверху варом или смолой и вставлялась в стеклянную четырехугольную банку, заполненную раствором нашатыря, с цинковым электродом. При этом хлор из нашатыря (хлористого аммония), соединяясь с цинком, давал хлористый цинк. Аммоний распадался на растворяющийся аммиак и водород. Вот тут-то и была ахиллесова пята этого превосходного элемента. Перекись марганца окисляла водород медленно и небольшими порциями. А выделение этого газа зависело от силы тока, который отбирается от элемента. Больше ток — больше выделяется и водорода. Водород же поляризует элемент, и последний быстро «устает». Правда, после некоторого «отдыха» он исправно работает снова. Однако лучше всего им было пользоваться при «малых токах» в телеграфии или в системе сигнализации, где между моментами работы существуют значительные перерывы.
Большое неудобство при использовании элементов Лекланше создавали стеклянные банки с жидкостью. Особенно сетовали на этот недостаток компании пассажирских перевозок. Океанские корабли снабжались сложной и разветвленной системой сигнализации, стараясь не уступать в этом отношении большим отелям. Но корабли подвергались качке… Сначала, чтобы не расплескать жидкость из элементов, их банки наполняли опилками, заливая сверху тем же варом. Но под такой «крышкой» образовывались газы, и элементы стали взрываться… Не скоро научились люди изготавливать «сухие элементы», ставшие в наше время такими обычными. Да, бесчисленные батарейки, работающие сегодня в самых разных электрических и электронных устройствах, не что иное, как многократно усовершенствованный и упрощенный «элемент Лекланше». Впрочем, наряду с ним работают и другие системы — миниатюрные и не очень, они обслуживают цепи, в которых используются «слабые токи».
Великим достижением прошлого века, связанным с исследованием работы тех же элементов, явилось открытие возможности последовательного и параллельного их соединения, когда в первом случае удавалось получить от них суммарное напряжение, а во втором — суммарный ток…
Сегодня эти «чудеса» изучают ребята в седьмом классе в курсе физики, и они, как правило, никого не удивляют.
Вторичные элементы
Давайте еще раз ненадолго вернемся к 1800 году, ко времени, когда Алессандро Вольта построил свою первую батарею. Год спустя исследователи заметили, что если два одинаковых металла погрузить в подкисленную воду и соединить их с вольтовым столбом, то через некоторое время эта система заряжается и становится на короткое время источником тока. При этом положительным оказывается тот ее электрод, который был соединен с положительным полюсом вольтова столба.
Это открытие привлекло внимание. А необходимость бороться с поляризацией — бичом первых гальванических элементов — добавила исследователям усердия.
Грове в 1839 году изобретает «газовый элемент», который получил название «вторичного элемента», поскольку давал ток лишь после зарядки его от какого-нибудь постороннего источника. Однако из-за неудобства пользования «газовый элемент» Грове распространения не получил.
Примерно в 1859–1860 годах в лаборатории Александра Беккереля — второго представителя славной династии французских физиков — работал в качестве ассистента некто по имени Гастон Плантэ. Молодой человек решил заняться совершенствованием вторичных элементов, чтобы сделать их надежными источниками тока для телеграфии. Сначала он заменил платиновые электроды «газового элемента» Грове свинцовыми. А после многочисленных опытов и поисков вообще перешел к двум одинаковым свинцовым листам. Он их проложил суконкой и навил этот «сэндвич» на деревянную палочку, чтобы он влезал в круглую стеклянную банку с электролитом. Затем подключил обе пластины к батарее. Через некоторое время «вторичный элемент» зарядился и сам оказался способен давать достаточно ощутимый ток постоянной силы. При этом, если его не разряжали сразу, заряд электричества сохранялся в нем длительное время.
Собственно, это и было рождением аккумулятора — накопителя электрической энергии. Первые аккумуляторы Гастона Плантэ имели очень незначительную электрическую емкость — они запасали совсем немного электричества. Но изобретатель заметил, что если заряженный первоначально прибор разрядить, затем пропустить через него ток в обратном направлении и повторить этот процесс не один раз, то емкость аккумулятора увеличится. При этом возрастал слой окисла на электродах. Этот процесс получил название формовки пластин и занимал сначала ни много ни мало около трех месяцев…
Как и у всех гальванических элементов, ток аккумулятора тем сильнее, чем больше поверхность соприкосновения электрода с раствором электролита. Эту истину хорошо усвоил Камилл Фор. Он был самоучкой — без специального образования, — с юных лет безраздельно увлеченным техникой. Вынужденный зарабатывать деньги на жизнь. Фор сменил множество специальностей. Был рабочим, чертежником, техником, химиком на английском пороховом заводе, работал и у Плантэ. Разносторонние практические знания сослужили ему добрую службу. После Парижской выставки 1878 года в голову Камилла Фора запала идея нового способа формовки пластин. Он попробовал заранее покрывать их свинцовым суриком. При зарядке сурик на одной из пластин превращался в перекись, а на другой соответственно раскалялся. При этом слой окисла приобретал очень пористое строение, а значит, площадь его поверхности значительно увеличивалась. Процесс формовки протекал значительно быстрее. Аккумуляторы Фора при том же весе запасали значительно больше электрической энергии, чем аккумуляторы Плантэ. Другими словами, их энергоемкость была больше. Это обстоятельство особенно привлекало к ним симпатии электротехников. Но главная причина их возросшей популярности заключалась в другом…
В конце столетия во многих странах на улицах и в домах появилось электрическое освещение. Лампы накаливания питались энергией пока еще маломощных машин постоянного тока. Ранним утром и поздним вечером, когда энергии требовалось больше, на помощь машинам приходили аккумуляторы. Это было значительно дешевле, чем устанавливать дополнительные генераторы. Тем более что в спокойные дневные и ночные часы аккумуляторы могли заряжаться, поглощая излишки вырабатываемой машинами энергии.
Дальнейшее совершенствование свинцово-кислотных аккумуляторов шло по пути улучшения их конструкции и изменения технологии изготовления пластин.
Совсем недавно появилось сообщение, что на Западе разработан гигантский свинцово-кислотный аккумулятор весом 2250 тонн. Он займет площадь около 0,2 гектара и будет предназначен для подключения к электросети в часы пиковой нагрузки. Зарядка его будет производиться в ночное время, когда потребление энергии падает. Применение такого супераккумулятора позволит выровнять работу тепловых электростанций, особенно страдающих от неравномерности нагрузки, и даст значительную экономию нефтяного топлива. Проектная мощность аккумулятора — порядка 45 мегаватт.
Вообще же, несмотря на широкое распространение, свинцовый аккумулятор — довольно капризное детище электротехники. Он требует чистого электролита, без каких-либо посторонних примесей. Аккуратные мотоциклисты и автолюбители это хорошо знают и потому доливают «банки» всегда дистиллированной водой. Аккумулятор не терпит перегрузок. Если ток разряда чересчур сильный, пластины его разрушаются. Не любит он и перегрева, переохлаждения, глубокого разряда, перезаряда… Корпуса свинцово-кислотных аккумуляторов, изготовленные из стекла или пластмассы, хрупки… Все эти недостатки еще на заре развития аккумуляторов заставляли изобретателей искать замену свинцу. Попыток было много. Большинство безуспешных. Удача выпала на долю Эдисона. После многих опытов американский изобретатель построил железо-никелевый щелочной аккумулятор. В наши дни он используется не менее широко, чем его старший брат.