Чтение онлайн

на главную

Жанры

Рассказы об электричестве
Шрифт:

В нем отрицательный электрод выполнен из пористого железа или кадмия с большой рабочей поверхностью. Положительный электрод — никелевый, окруженный окисью трехвалентного никеля. В качестве электролита используется 21-процентный раствор едкого кали или едкого натра. Корпус чаще всего изготавливается из стали.

Правда, ЭДС щелочного аккумулятора ниже, чем у свинцового (всего 1,4–1,3 В на банку). Коэффициент полезного действия тоже поменьше (всего около 50 %). Да и стоит щелочной аккумулятор дороже. Но… Он хорошо переносит перегрузки. Нечувствителен к избыточному заряду и сильному разряду. Прочен. Легко переносит перегрев и не нуждается в ремонте. А поскольку из щелочных аккумуляторов не выделяются газы, их можно делать герметически закрытыми. Согласитесь, что преимущества весьма впечатляющие. Немудрено, что в наши дни именно эти приборы, с кнопку величиной, широко применяются в фотоаппаратах и транзисторах.

Электричество в «консервах»

В последнее время внимание научно-исследовательских коллективов во всех промышленно развитых странах направлено на разработку новых типов аккумуляторов и супераккумуляторов. Главная задача — повысить энергоемкость: увеличить количество запасаемой энергии на единицу веса аккумулятора.

В XIX веке зал зарядки аккумуляторов выглядел уже вполне современно.

Сейчас уже известны и широко используются серебряно-цинковые аккумуляторы. В них отрицательный электрод, как и полагается, сделан из цинка, а положительный из окиси или перекиси серебра. А электролитом служит едкое кали. Их энергоемкость раз в шесть больше, чем у свинцовых. Кроме того, они могут работать при достаточно низких (до — 60 °C) температурах, давать сильные токи и не боятся долгое время находиться в разряженном состоянии. Но серебро дорого. И потому серебряно-цинковые аккумуляторы применяются лишь в исключительных случаях.

Проблема создания энергоемких аккумуляторов приобретает особое значение в связи с бурным развитием транспорта. Автомобили пожирают запасы дорогостоящего горючего и загрязняют атмосферу. Между тем еще в 1898 году француз Ж. Шасслу-Лоба достиг на электромобиле скорости 63 км/ч. А через год гонщик К. Иенатци установил мировой рекорд скорости на суше в 105,9 км/ч на машине, снабженной аккумуляторной батареей массой около двух тонн.

Первый пригодный для эксплуатации русский электромобиль был построен инженером И. В. Романовым в 1902 году в Петербурге. А в Чикаго в начале века количество электромобилей примерно вдвое превосходило количество машин с бензиновыми двигателями. В чем же дело? Почему до сих пор автомобилестроители не перешли на экологически безвредную электроэнергию?

Увы, главная проблема как раз и заключается в накопителях, во «вторичных элементах», как называли когда-то аккумуляторы. Ведь современный свинцово-кислотный аккумулятор весом 5,5 килограмма, который стоит на автомобиле, способен накопить и удержать в себе столько энергии, сколько ее заключено… в рюмке бензина!

40 литров бензина — емкость бака обычной легковой машины — эквивалентны по заключенной в них энергии 4,5 тоннам аккумуляторных батарей. А время заряда-заправки? 40 литров бензина вы зальете за пять, ну, за десять минут. Перезарядка же аккумуляторов длится часами.

Современные электромобили не вписываются в общий темп существующего дорожного движения. Они медленно разгоняются и трудно берут подъемы. Дальность пробега между перезарядками 50–60 километров. А максимальная скорость не больше 80 км/ч. Пока электромобили не конкурентоспособны. Что же делается для того, чтобы вывести их на должный технический уровень?

Те из вас, кто следит за новинками техники, наверняка уже не раз слышали или читали о серно-натриевых или серно-литиевых супераккумуляторах, которые разрабатывались некоторыми фирмами. Натрий — металл, обладающий высокими энергетическими свойствами. В рабочем состоянии и натрий и сера нуждаются в подогреве, чтобы перейти в расплавленное состояние. Их разделяет сосуд из пористой керамики, изготовленной на основе алюминия. Главное свойство сосуда — его способность пропускать только ионы натрия. Для ионов серы и для атомов обоих химических элементов керамическая мембрана — непреодолимый барьер. Таким образом она играет роль как бы твердого электролита. Но хотя натрий и сера плавятся при температуре 97-119 °C, для успешного протекания электрохимической реакции нужен подогрев до 300 °C, не меньше. Правда, серно-натриевый аккумулятор требует постороннего источника тепла только для начала работы. Потом необходимая температура поддерживается за счет тепла, выделяющегося в ходе химической реакции.

Удельная емкость такого супераккумулятора раз в десять, а то и в двенадцать превосходит ту же характеристику свинцово-кислотного. Сернонатриевый элемент дешев. Применяемые в нем материалы не дефицитны. Во время работы из него не выделяются газы, значит, его можно герметизировать. А если добавить к этому еще и простоту заряда, то может показаться, что решение проблемы у нас в кармане. Но попробуем перечислить и недостатки. Сера и натрий огнеопасны. А перед работой аккумулятор необходимо подогревать. Едкие вещества легко разъедают — коррозируют — герметическую оболочку. А ведь натрий так жадно соединяется с водой, что реакция подобна взрыву. Да и расплавленная сера при контакте с воздухом образует ядовитый сернистый газ. Так что, несмотря на герметичность, такой аккумулятор требует большой осторожности при эксплуатации.

Автомобили и электромобили конца XIX века.

Очень похож на только что описанный элемент и хлорно-литиевый аккумулятор, удельная энергоемкость которого еще выше. Но у него серьезным недостатком является ядовитость хлора. А ну как прорвется он где-нибудь! Конечно, бензин тоже не такое уж безобидное вещество, особенно если поблизости есть открытый огонь. Но к свойствам бензина все привыкли. А вот к характеру натрия и лития, хлора и серы относимся пока настороженно.

Специалисты считают, что пока супераккумуляторы еще не могут найти реального применения в обычной технике. Но они разрабатываются, постоянно совершенствуются и считаются весьма перспективными.

В научных журналах нередко появляются сообщения о создании опытных образцов и разработок очень любопытных аккумуляторных батарей. Вот, например, одна из них — литиево-никельгалоидная. В ней работает уже знакомый нам металл литий и неядовитое неорганическое фтористое соединение никеля. Отсутствие газовыделения позволяет и этот аккумулятор сделать полностью герметичным. Он не требует подогрева. Энергоемкость его — на уровне супераккумуляторов, а процесс зарядки длится всего несколько минут. Прекрасно, не правда ли? Но пока этот элемент еще не вышел из стен научно-исследовательских лабораторий. И конкретно говорить о его возможностях рановато.

Глубоководный аппарат «Алюминаут», снабженный медными аккумуляторами.
Современный советский микроавтобус РАФ-2210, работающий от аккумуляторов.

Разрабатываются воздушно-цинковые аккумуляторы, использующие кислород атмосферы, окисляющий цинковый анод. В них запас энергии будет определяться вообще количеством цинка, способного вступить в реакцию. Пока их еще трудно хранить и у них чересчур малый срок службы. Идея использовать воздух в качестве одной из составляющих системы накопителя энергии, конечно, очень заманчива. Но реализовать ее нелегко.

Интересным и перспективным направлением работ является разработка топливных элементов. Правда, некоторые исследователи считают, что эти системы, занимающие промежуточное положение между гальваническими элементами и аккумуляторами, относятся скорее к электрическим машинам. Они их так и называют: электрохимические генераторы — ЭХГ. В топливных элементах свободная энергия электрохимической реакции переходит непосредственно в электрическую энергию. Вот, например, схема водороднокислородного топливного элемента: газ водород поступает из баллона-термоса, где хранится в сжиженном состоянии, к отрицательному электроду-катализатору. Здесь он ионизуется. Точно так же к положительному электроду поступает кислород. Ионы водорода проходят через ионообменную мембрану, соединяются с ионами кислорода. Образовавшаяся в результате реакции вода — единственный «выхлоп» такого элемента-генератора. Заманчивая перспектива, не так ли?

Популярные книги

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Тринадцатый II

NikL
2. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый II

Город- мечта

Сухов Лео
4. Антикризисный Актив
Фантастика:
героическая фантастика
попаданцы
5.00
рейтинг книги
Город- мечта

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Сахар на дне

Малиновская Маша
2. Со стеклом
Любовные романы:
современные любовные романы
эро литература
7.64
рейтинг книги
Сахар на дне

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Предатель. Вернуть любимую

Дали Мила
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Предатель. Вернуть любимую

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Пропала, или Как влюбить в себя жену

Юнина Наталья
2. Исцели меня
Любовные романы:
современные любовные романы
6.70
рейтинг книги
Пропала, или Как влюбить в себя жену

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

Смерть может танцевать 3

Вальтер Макс
3. Безликий
Фантастика:
боевая фантастика
5.40
рейтинг книги
Смерть может танцевать 3