Развлечения со спичками
Шрифт:
Ил 6-ти спичек сложены прямоугольник и равносторонний треугольник. Обводы этих фигур, конечно, одинаковы. А у какой больше площадь? (рис. 48).
Решение
Чтобы решить эту задачу, надо знать, как вычисляется площадь треугольника: умножают длину основания на высоту и полученное произведение делят пополам; или — что то же самое — умножают половину основания на высоту. В нашем треугольнике половина основания = одной спичке, т.-е. основанию прямоугольника. Если бы высоты этих фигур были одинаковы, то обе фигуры имели бы равные площади.
Но легко
Задача 35-я
Сейчас мы составили из 6-ти спичек прямоугольник и равносторонний треугольник. Но из того же числа спичек можно составить еще и другие фигуры, имеющие одинаковый обвод. Некоторые из этих фигур изображены на рис. 49.
Площади всех этих фигур различны. Спрашивается, у какой же из них площадь наибольшая?
Решение
Мы уже знаем, что площадь фиг. 1 больше площади фиг. 2. Легко сообразить, что она больше также и площади фиг. 3 (сравните их высоты!)
Остается, следовательно, сравнить по величине площади фигуры 1, 4 и 5. Мы можем рассматривать все три фигуры, как шестиугольники с равными сторонами (у фиг. 1 два угла выпрямлены). В курсах геометрии доказывается, что из всех многоугольников с одинаковым числом сторон и одинаковым обводом наибольшую площадь имеет многоугольник правильный, т.-е. такой, у которого равны не только стороны, но и углы. Этому условию удовлетворяет фигура 5; она следовательно, и имеет наибольшую площадь, какую можно ограничить шестью спичками [6] .
6
Подробнее о вопросах этого рода — см. в моей книге "Занимательная геометрия на вольном воздухе и дома".
Покажем кстати, как можно сложить из спичек правильный шестиугольник.
Для этого нужно примкнуть друг к другу 6 равносторонних треугольников, как показано на рис. 50, и затем вынуть внутренние спички.
Задача 36-я
На рис. 51 вы видите остров, окруженный каналом. Ширина канала как раз равна длине одной спички, так что перебросить мостик через канал с помощью одной спички нельзя: невозможно опереться концами о берега канала.
Не удастся ли вам перекинуть мост через канаву помощью двух спичек? Помните, однако, что склеивать или связывать эти две спички не полагается.
Решение
Решение этой задачи основано на том, что длина линии, соединяющей противоположные углы квадрата (так назыв. диагональ), меньше длины 11/2 спичек (см. рис. 52). Зная это, мы можем построить требуемый мост так, как показано на рис. 53, — т.-е. одну спичку кладем в положении 5–6, а другую в положении 7–4. Расстояние 2–7 очевидно равно расстоянию 5–7; расстояние 2 4, т.-е. диагональ квадрата меньше длины полутора спичек; а так как расстояние 2–7 равно половине спички, то пролет 7–4 короче длины спички. Отсюда и вытекает возможность сооружения нашего моста.
Задача эта может оказаться и практически полезной в том случае, когда, имея две одинаковые жерди, нужно перебросить (не связывая их между собою) мост через канаву, ширина которой как раз равна или даже чуть больше длины одной жерди.
Возможно это, впрочем, только в том месте канавы, где она поворачивает под прямым углом (рис. 54).
Задача 37-я
В витрине магазинов спичечного треста нередко выставляются ради рекламы огромные спичечные коробки, по фасону совершенно подобные обыкновенным; а внутри коробки видны столь же чудовищные спички. Предположим, что такой коробок в 10 раз длиннее обыкновенного.
Спрашивается;
1) сколько весит одна исполинская спичка, принимая вес обыкновенной спички в 1/10 грамма?
2) сколько спичек обыкновенного размера мог бы вместить один коробок-великан?
Ответ, что спичка-великан весит (1/10) х 10, т.-е. всего один грамм, — конечно, явно несообразен: ведь это чуть не настоящее полено — правда, всего в 2 см толщины, зато в полметра длины!
Так же несообразно допустить, что в огромном коробке всего вдесятеро больше спичек, чем в обыкновенном, — т.-е. столько, сколько в 10 коробках.
Десять выложенных в ряд коробков не похожи на тот внушительный ящик, который выставлен в витрине.
Каковы же правильные ответы?
Решение
Огромная спичка не только в 10 раз длиннее обыкновенной, но и в 10 раз толще и шире; следовательно, она превышает обыкновенную спичку по об'ему в 10 х 10 х 10, т.-е. в 1000 раз. Отсюда определяем вес ее: (1/10) х 10 = 100 граммов.
Точно так же коробок — великан вместительнее обыкновенного в 1000 раз, и, значит, в него может войти около 50.000 обыкновенных спичек.
Высотомерами называются инструменты, посредством которых можно определять высоту предметов — дерева, столба, башни, — не взбираясь на их вершину.
Лесничий всегда имеет при работе удобный инструмент такого рода, нередко карманного размера, для измерения высоты деревьев. Вы можете также обзавестись небольшим удобным дальномером, смастерив его из обыкновенного спичечного коробка. Вам понадобится для этого даже и не весь коробок, а только его наружная часть.
Чтобы приспособить ее для дальномера, нужно, прежде всего, ее укоротить, сделав длину равной ширине. Отрезав лишнюю часть коробка, как показано на рис. 55 и 56, надо заклеить отверстия полоской бумаги. У короткого края заклеенного прямоугольника проделывают небольшое отверстие — примерно в полсантиметра. Этим исчерпывается изготовление дальномера.
Об'ясним теперь, как им пользоваться для измерения высот.
Пусть вы желаете измерить высоту дерева BD(рис. 57).
Вы становитесь на некотором расстоянии от дерева и, держа дальномер так, чтобы нижний край его (близ которого устроено отверстие) располагался горизонтально, смотрите через отверстие на верхушку дерева. Приближаясь к дереву или удаляясь от него, отыскиваете такое место, стоя на котором вы увидите через дырочку аверхушку дерева В, как бы касающуюся верхнего краяЬ спичечного коробка (рис. 58).