Репортаж из XXI века
Шрифт:
— Утренние часы — лучшее время для работы, — сказал ученый, — я всю жизнь вставал рано и поэтому считаю, что по сравнению со всеми другими имею два-три лишних часа каждые сутки. Посчитайте, на сколько это может удлинить жизнь!
Ученый весело смеется. Потом глаза его становятся строгими, даже холодными. Положив руку на пачку научных журналов, он начинает разговор.
— Зависть — чувство вредное: оно сокращает жизнь. Но все же невольно завидую тем, кто будет жить лет через пятьдесят и будет пользоваться всем тем, что сможет дать к тому времени наука и техника.
А дать они смогут очень много! Мы привыкли к постоянному окружению удивительнейших машин и почти не замечаем их постоянных услуг. А ведь машины освещают и обогревают наши квартиры,
Раз, когда я был по делам службы в Америке, обратно в Европу мне довелось возвратиться на одном из крупнейших и комфортабельнейших в мире судов «Куин Мэри». Этот корабль имеет водоизмещение в 81 тысячу тонн, а мощность силовых установок — 200 тысяч лошадиных сил, мощность крупной ТЭЦ. И вот это судно попало в шторм. Его швыряло, как щепку, оно скрипело так, что, казалось, вот-вот развалится. Но все же оно двигалось, и двигалось неплохо, делая километров шестьдесят в час. Весь переезд через Атлантический океан у нас занял всего около пяти суток.
Ну, а в будущем, через пятьдесят лет, сколько времени уйдет на такое путешествие?
Я думаю, оно займет раз в пять меньше времени. Но для этого форма судов должна будет резко измениться.
Сопротивление движению судов в воде складывается из двух величин: сопротивление воды и сопротивление воздуха. Главным в настоящее время является первое.
Как же его уменьшить? Попробовать извлечь корпус судна на время движения из воды? Действительно, наверное, все видели, как стремительно летит глиссер, прыгая по вершинам волн, словно сказочная летучая рыба. Корпус его сделан широким и плоским, он скользит по поверхности воды, как гигантская лыжа. Однако больших судов-глиссеров, даже не таких, как «Куин Мэри», а в десятки раз меньших, не построено. Мешает этому целый ряд технических трудностей.
В последние годы всеобщее внимание привлекли суда с так называемыми подводными крыльями. Во время движения судна это крыло, находящееся глубоко под его корпусом в воде, так же как крыло самолета в воздухе, испытывает подъемную силу. Само оно остается под водой, а весь корпус судна поднимает. Такие суда, но опять-таки небольшого водоизмещения, плавают уже по Волге. Но большегрузных судов такого типа пока нет, хотя они, вероятно, и появятся.
Вполне возможно, что решить проблему уменьшения сопротивления воды можно и не поднимая корпус судна, а коренным образом изменив его форму. Ведь форма судов и у греческих трирем была почти такой же, как у современных океанских лайнеров. А вот если разрезать корпус современного судна по главной плоскости симметрии и, перевернув половинки, составить их, — ученый несколькими взмахами карандаша набросал эскиз, — и гребной винт в насадке либо водометные движетели поставить между половинками, то сопротивление движению такого судна значительно уменьшится. Я проводил испытания с моделью такого судна. По моим примерным подсчетам, сила тяги его увеличилась на 45 процентов. Резко уменьшились носовые и кормовые волны. А ведь волны, образуемые судном, это потерянная энергия его двигателя.
Если бы корпус «Куин Мэри» был бы реконструирован по указанному принципу, то судно могло бы пересечь океан и прибыть в Европу не на пятый, а на третий день. Вот на таких двухопорных судах и будут, вероятно, путешествовать наши потомки в будущем.
Думаю, я не ошибусь, если выскажу предположение, что пассажирские океанские суда конца XX, начала XXI века будут подводными. Конечно, повышение скорости хода судна в значительной степени уменьшит неприятности, которые вызывает штормовая погода. Однако значительно спокойнее и интереснее уйти под воду и там продолжать свое путешествие. Подводные пассажирские, да и грузовые суда будут совершать в течение круглого года коммерческие рейсы под льдами полярных морей, соединяя кратчайшим путем два материка.
Необходимо особо остановиться на двигателях морских и океанских судов будущего. Нет сомнения, что это будут атомные двигатели.
В чем огромное преимущество применения атомной энергии для транспорта по сравнению с углем и нефтепродуктами? Прежде всего в том, что освобождаемая при расщеплении урана энергия громадна: один килограмм урана-235 по теплотворной способности примерно равен 2,5 тысячи тонн антрацита, то есть двум груженым железнодорожным составам.
Это означает, что на судах будущего не будет громоздких бункеров для топлива (угля, нефти), которые у морских грузовых судов нашего времени занимают до одной трети водоизмещения! Значит, их полезная грузоподъемность увеличится по меньшей мере на одну треть.
В настоящее время уже практически решен вопрос о применении атомных реакторов на морских судах. Подсчеты Института комплексных транспортных проблем Академии наук СССР указывают, что провозная способность судов с атомными установками, даже в современной начальной стадии их применения, на 20–30 процентов больше, чем у судов с паровыми турбинами. Себестоимость перевозки на судах с атомными установками будет значительно меньшая, чем себестоимость перевозки на судах с паровыми турбинами. Океанские грузовые суда будут иметь грузоподъемность 100–200 тысяч тонн: при большой скорости их движения, порядка 120–150 километров в час, такие суда будут иметь хорошо обтекаемые подводные и надводные части. Именно атомные силовые установки и обеспечат те фантастические, на наш сегодняшний взгляд, скорости передвижения морских судов, о которых мы уже говорили.
Однако трансокеанское пассажирское движение будет совершаться не пассажирскими судами, а реактивными самолетами большой скорости.
— Теперь — о сухопутном транспорте для большегрузных дальних перевозок, о железных дорогах. Совершенно убежден, что в самое ближайшее время мы сможем совершать дальние рейсы в большегрузных поездах. Я говорю о ширококолейном транспорте. Существующая общепринятая в нашей стране ширина железнодорожной колеи—1524 миллиметра — была предложена одним из строителей дороги Петербург — Москва инженером Мельниковым. Уже сегодня она нас удовлетворить не может. Ширина колеи в 3–5 метров позволит нам строить значительно более грузоподъемные вагоны и использовать локомотивы мощностью в 40–50 тысяч лошадиных сил, чтобы обеспечить скорость движения в 250–350 километров в час. Значительно облегчится вопрос об использовании на таких локомотивах атомных реакторов. Ведь, как известно, только значительный вес биологической защиты препятствует тому, чтобы уже сегодня на наши железные дороги вышли атомные локомотивы, хотя удовлетворительные проекты таких локомотивов имеются в разных странах. Даже студенты старших курсов технических вузов проектируют такие локомотивы.
Вы спрашиваете, не целесообразно ли сразу перейти на еще более широкую колею? По всей вероятности, когда-нибудь вопрос о необходимости постройки трансконтинентальных дорог с такой колеей и встанет. Но это будет уже за гранью XXI века — может быть, где-то в его середине, лет через 100–150.
В последние годы возрастает значение трубопроводного транспорта. Есть основание думать, что этот вид транспорта получит еще большее развитие для передвижения массовых грузов: нефтепродуктов, цемента, зерна, муки и т. п.
Несколько слов о городском транспорте.
В последние десятилетия во всем мире резко увеличился парк автомашин, и это начало превращать удобства автомобильного движения в свою противоположность.
В Нью-Йорке мне пришлось наблюдать начало этого пренеприятнейшего явления. На некоторых участках улиц города такая насыщенность движения, что невозможно протолкнуться. Автомобили движутся со скоростью пешеходов. Двустороннего движения на многих улицах нет — все движение происходит в одном направлении, так как мешают стоящие у тротуаров сплошные ряды автомобилей. В таких условиях нельзя реализовать даже малой части тех возможностей скорости движения, которое обеспечивает мощность силовых установок современного автомобиля.