Репортаж из XXI века
Шрифт:
Обрадованные, мы пустили подшипники из этого сплава на конвейер. И — о ужас! — 95 процентов изделий пошло в брак. При расточке металл оказывался ноздреватым, как швейцарский сыр!
В девяносто пяти случаях из ста!
Но в пяти случаях металл все-таки получался отличным. Надо было выяснить, чем отличалась технология изготовления этих пяти подшипников от девяноста пяти остальных.
На практике у меня в то время было несколько студентов. Я поставил перед ними этот вопрос. И дня через три один из них вошел в мой кабинет.
— Разгадка найдена, — сказал он.
Все
— Вы убеждены в этом? — спросил я.
— Да, — ответил он, — доброкачественный металл получается в том случае, когда в момент заливки в кузнице работает большой молот…
Действительно, это была разгадка, первое в жизни научное открытие молодого ученого, с которым мы потом долго работали вместе. Он погиб во время войны в осажденном Ленинграде…
На другой день мы приделали к столу, на котором производилась заливка баббита, специальный вибратор, полностью заменивший работу кузнечного молота. И брак прекратился…
Второй случай… Знаете ли вы, что сталь во время закалки имеет свойство коробиться? Это крайне неприятное явление, которое видели и которое наделало немало неприятностей не сотням, не тысячам, а десяткам тысяч инженеров. А калильщики, закаливая длинные и узкие напильники, поступают так. Берут раскаленный напильник, опускают его на несколько мгновений в расплавленный свинец или масло — это зависит от качества стали — и сразу вынимают. Словно прицеливаясь вдоль грани, они смотрят, куда напильник «повело», а затем правят его легкими ударами молотка или специальным приспособлением.
Почему-то никто из тысяч видевших это инженеров в течение десятков лет не задал себе простой вопрос: а как это удается калильщику выправить закаленную сталь? По пробуйте-ка изогнуть хоть чуть-чуть купленный в магазине напильник!
Когда ученые разобрались, оказалось, что в первые минуты после того, как вы опустили раскаленную сталь в жидкость для закалки, перекристаллизация в ней еще не прошла. Она остается еще такой же, как и до начала охлаждения. Из нее можно узлы завязывать. Только нельзя упустить эти короткие мгновения, потому что уже через несколько минут произойдет перекристаллизация, и если вы начнете металл гнуть, он расколется, рассыплется на куски.
А сейчас из этого наблюдения возникла изотермическая закалка, которая уже стала обычной вещью, применяемой повсеместно.
Все это я рассказал для того, чтобы показать: научное творчество — это не удел немногих избранных жрецов, замкнувшихся в священных храмах, именуемых^ лабораториями и институтами. Очень и очень многие задачи, стоящие перед наукой, могут быть решены в цехе завода, в мастерской, на колхозном поле…
Еще более определенно ответил на наш вопрос о возможности активной помощи ученым со стороны самых широких кругов людей лауреат Ленинской премии академик Александр Львович Минц. Один из самых выдающихся наших ученых в области токов высокой частоты, в области радио, он считает радиолюбителей активнейшим и могучим отрядом в борьбе за технический прогресс своей науки.
— Радиолюбители всегда были верными помощниками ученых, — сказал Александр Львович. — Они приходят на помощь науке и технике в двух случаях. Во-первых, тогда, когда требуется организация массовых радионаблюдений, когда только накопление большого количества фактов может позволить правильно решить ту или иную задачу. Ведь радиолюбителей сотни тысяч; складывая по зернышку свой драгоценный опыт, только они и могут насыпать основание, на котором утвердится фундамент точного знания в области радиотехники.
Во-вторых, вторжение в науку радиолюбителей полезно, когда надо поставить смелый опыт, выходящий за рамки установившихся общепринятых методоз. Специалист-ученый волей-неволей благодаря сдерживающему влиянию его знаний и опыта ограничен в выборе пути исследования. Его больше, чем неспециалиста, связывают цепи установившихся понятий. Радиолюбитель может сделать девяносто девять самых смелых (а иногда и самых нелепых) опытов, в него за это никто камень не бросит. Если сотый опыт окажется удачным, это уже отлично.
Мне не раз приходилось поражаться на выставках изумительной смелости радиолюбительских конструкций. Сколько в них таланта, сообразительности, тончайшего мастерства! Радиолюбитель не связан вопросами технологии, экономичности в серийном изготовлении — ничем не связан, кроме своей фантазии и законов природы. А инженер… Он думает и о доступности того или иного материала, и о квалификации рабочих, которым надлежит осуществить его конструкцию.
Вот несколько примеров из истории радиотехники, показывающих, как полезно бывает вмешательство радиолюбителей.
В 1923–1924 годах общепринятым было мнение, что устойчивая дальняя радиосвязь возможна только на длинных волнах. Эти волны распространяются вдоль земной поверхности. Единственным средством увеличения дальности действия радиостанций считали увеличение мощности длинноволновых передатчиков и повышение мачт, поддерживающих их антенны.
А радиолюбители опрокинули эти общепринятые тогда взгляды и при помощи радиостанций ничтожной мощности, работая на коротких радиоволнах, установили фантастические рекорды дальности радиосвязи. Москвичи разговаривали с австралийцами, парижане с канадцами, аргентинцы с японцами. И теоретикам пришлось пересмотреть свои позиции. Было открыто отражение коротких волн от ионосферы. Эти волны стали основой дальней радиосвязи. Они нашли широчайшее применение.
А сегодня… Ученые еще не спроектировали, инженеры не пустили в серийное производство «всемирных телевизоров»; общепринятым считается, что телевидение возможно «в пределах прямой видимости». А радиолюбители, смастерив какие-то немудреные приставки к своим телевизорам, устойчиво принимают под Харьковом телепередачи из Парижа и Лондона, близ Риги — передачи из Москвы и Варшавы. Снова приходится ученым осмысливать опыт радиолюбителей, подводить под него теоретическую базу. При благоприятных условиях, говорят уже они, и телевидение может стать всемирным, как сегодня — радиовещание.