Революция растений
Шрифт:
Но насколько долго может служить такая память? Для того чтобы ответить на этот вопрос, мы подвергли испытанию около сотни растений, при этом каждое из них учили различать два разных воздействия. Повторный опыт показал, что они запомнили то, чему мы их учили. Более того, результат превзошел все наши ожидания: Мимоза стыдливая помнила о характере воздействий в течение 40 дней. Это поразительно длительный период по сравнению с продолжительностью памяти многих насекомых, и даже некоторых животных с более высокой организацией.
Как работает этот механизм у растений – до сих пор загадка, ведь мозга то у них нет. Многочисленные исследования, посвященные прежде всего реакции на стресс, показывают, что, похоже, решающую роль в формировании памяти о событии играет эпигенетика
Совсем недавно выяснилось, что значительная часть цепочки ДНК, не играющая роли в кодировании процессов, но присутствующая в клетке и ранее считавшаяся «лишней», выполняет совершенно неожиданные задачи, крайне важные для биологии клетки. Например, эта якобы лишняя часть отвечает за воспроизводство молекулы РНК, играющей ключевую роль в развитии эмбриона, в обеспечении функционирования мозга и других процессов, без которых невозможна никакая жизнедеятельность. Как это часто случалось в истории биологии, значительный прогресс в науке стал возможным благодаря исследованиям растений (прежде всего – предпринятым в самое последнее время), многочисленным попыткам прояснить тайну их памяти. Конкретный пример: как растениям удается запомнить, когда нужно начинать цветение? Их репродуктивный успех и вообще способность производить потомство основаны, прежде всего, на умении выбрать правильное время. Многие растения расцветают после ухода зимних холодов, спустя определенное количество дней с окончания зимы. Выходит, они способны понять, сколько времени прошло.
Несомненно, речь идет об эпигенетической памяти. Но до совсем недавнего времени мы вообще ничего не знали о том, как она работает. В сентябрьском номере за 2016 год журнала Cell reports группа исследователей под руководством Кариссы Санбонматсу из Национальной лаборатории Лос-Аламоса опубликовала результаты, полученные в процессе работы с особой последовательностью РНК, называемой COOLAIR. Именно она контролирует наступление момента весеннего цветения, определяя, сколько времени прошло с того момента, когда растение подвергалось воздействию холода. Если эта последовательность в РНК дезактивирована или удалена, растения не способны цвести вовсе. Не углубляясь в детали сложного процесса функционирования последовательности COOLAIR (которую можно назвать репрессором репрессора цветения), следует отметить, что подобные механизмы распространены куда как шире, чем предполагалось ранее, и, судя по всему, служат основой для растительной памяти. У растений эпигенетические модификации, похоже, играют более важную роль, чем у животных. Вероятно, что изменения в активности генов в результате стрессового воздействия могут быть запомнены клеткой именно благодаря эпигенетическим модификациям.
Метилирование – одна из наиболее распространенных эпигенетических модификаций ДНК.
Из недавних достижений следует упомянуть работу группы ученых под руководством Сьюзен Линдквист из отдела биологии Массачусетского технологического института в Кембридже (США). Они заметно продвинулись в попытках доказать гипотезу о том, что растения, – по крайней мере в тех случаях, когда подразумевается наличие у них памяти о времени цветения, – могут использовать такие протеины, как прионы. Прионы – это белки, у которых аминокислотная цепочка скручена аномальным образом (по-английски – misfolding) и которые провоцируют «эффект домино», распространяя аномальное строение на все соседние белковые цепочки. Животным прионы не несут ничего хорошего: они вызывают у них такое страшное поражение, как болезнь Крейтцфельдта-Якоба, более известную как коровье бешенство. Однако растениям прионы позволяют иметь биохимический вариант памяти.
Можно подумать, что такого рода исследования имеют чисто научное значение для ботаники, однако это не так. Постижение того, как работает память, действующая вне мозга, разгадка тайны растений помогают нам понять и то, как действует наша собственная память, какие механизмы лежат в основе различных отклонений или патологий, как память может храниться вне нервной системы. Кроме того, открытия в области биологических законов работы памяти имеют огромное значение для будущих технологических прорывов. Другими словами, открытия в этой сфере имеют значение для всех областей науки и несут в себе возможности, которые пока даже трудно вообразить.
A.-P. De Candolle, J.B. Lamarck, Flore francaise ou descriptions succinctes de toutes les plantes qui croissent naturellement en France, Parigi 18053.
S. Lindquist et al., Luminidependens (LD) is an arabidopsis protein with prion behavior, «Proceedings of the National academy of sciences of the United States of America», 113 (21), 2016, стр. 6065–6070.
S. Mancuso et al., Experience teaches plants to learn faster and forget slower in environments where it matters, «Oecologia», 175 (1), 2014, стр. 63–72.
K.Y. Sanbonmatsu et al., COOLAIR antisense RNAs from evolutionarily conserved elaborate secondary structures, «Cell reports», 16 (12), 2016, стр. 3087–3096.
II
От растений к плантоидам
Загляни глубже в природу, и ты поймешь все гораздо лучше.
Корневая система может состоять из миллионов ростков. Изображение позволяет увидеть небольшой кусочек сложнейшей корневой системы кукурузы.
Являются ли технологии, вдохновленные биологией, чем-то новым?
Спустя годы после появления первых прогнозов, многочисленных исследований, поисков и корректировок долгожданная революция роботов, кажется, наконец принимает вызов, брошенный человечеством. Дешевые и надежные автоматы через несколько десятков лет смогут заменить людей во многих видах деятельности, которая раньше считалась исключительно человеческой прерогативой. Некоторые профессии уже сейчас могут выполняться роботами – они вполне способны убрать пыль в квартире, обрезать траву на газоне или собрать мусор на улице, и это не воспринимается больше как фантастика.
Несмотря на то что автоматы давно стали реальностью, и в некоторых областях без них уже нельзя обойтись, мир все еще убежден, что они по-прежнему где-то в будущем. Их выход на сцену все еще ожидается. Это во многом ошибочное мнение порождено представлениями о том, как должны работать эти новые машины.
На самом деле их распространение уже давно идет по экспоненте в таких сферах, как индустриальная автоматизация, медицина, подводные исследования и подобных – там без роботов уже не обойтись. При этом каждый день появляются новые роботы: саперы, мусорщики, подводники… Однако, если обсуждать эту тему с друзьями и знакомыми, выясняется, что никто, похоже, не отдает себе отчета в том, что, по сравнению с ситуацией 30-летней давности, мы на самом деле окружены роботами со всех сторон. Почему так? Полагаю, из-за того, что массовые представления о роботах сформированы сотнями фильмов и книг, в которых те изображены в виде андроидов, чья конструкция имитирует поведение и облик человека.