Революция в микромире. Планк. Квантовая теория
Шрифт:
Когда Эйнштейн начал заниматься этой проблемой, было ясно, что ультрафиолетовое излучение выбивает с поверхности металла электроны. Энергия электронов зависит не от интенсивности, а от частоты излучения. Эйнштейн применил квантовую гипотезу, рассуждая следующим образом: если энергия кванта света полностью передается электрону, мы можем предположить, что для того чтобы оторваться от металла, нужна постоянная энергия W; электрон оторвется от поверхности металла с энергией Е, равной разнице между полученной энергией и энергией, требующейся для отрыва:
Е = hv - W.
Преимуществом данного выражения была возможность его проверки экспериментальными результатами. Также с его помощью можно было определить
Статья Эйнштейна вызвала определенный интерес, но была и раскритикована, прежде всего самим Планком. В предисловии ко второму изданию «Лекций по теории теплового излучения», написанных в 1912 году, можно прочесть:
«В то время как многие физики из консерватизма отвергают развитые мною соображения или занимают выжидательную позицию, другие авторы, напротив, считают необходимым дополнить мои соображения еще более радикальными предположениями. Таково, например, предположение, что распространение всякой лучистой энергии, даже в пустом пространстве, должно происходить неделимыми элементами или квантами. Так как для успешного развития новой гипотезы нет ничего вреднее, чем выход за предел ее применимости, то я всегда стоял за то, чтобы возможно теснее связать квантовую гипотезу с классической динамикой».
Планк говорит об Эйнштейне, хоть и не упоминает его. В приветственной речи при вступлении Эйнштейна в Прусскую академию наук в 1913 году Планк дает ему более дружелюбную и, ввиду будущих открытий, забавную характеристику:
«То, что он в своих умозаключениях иногда, возможно, уходит слишком далеко, как, например, в своей гипотезе световых квантов, вряд ли заслуживает серьезного упрека: не отваживаясь когда-то на риск, даже в самых точных науках о природе невозможно добиться ничего подлинно нового».
Но так же удивительно и то, каким образом в конце концов весы склонились в пользу Эйнштейна. Между 1914и 1915 годами американский физик Роберт Милликен (1868-1953) представил Американской физической ассоциации свои результаты многолетнего экспериментального исследования фотоэффекта. Милликен публично заявлял, что одной из целей этого исследования было опровержение квантовой гипотезы Эйнштейна. Однако в статье с полным отчетом об эксперименте, опубликованной в 1916 году в журнале The Physical Review, можно прочесть:
«В 1905 году Эйнштейн установил первое отношение между фотоэффектом и квантовой теорией, выдвинув смелую, если не сказать несуразную [Милликен использует английское слово reckless] гипотезу о частице света с энергией , энергия которой передается и поглощается электроном. Гипотезу можно квалифицировать [...] как несуразную [...], потому что локализованное в пространстве электромагнитное возмущение нарушает саму концепцию электромагнитного излучения».
Однако статья американского физика завершается фразой, не оставляющей сомнений:
«Уравнение фотоэффекта Эйнштейна было проверено с помощью самых точных тестов и, как нам кажется, во всех случаях соответствовало полученным результатам».
Роберт Милликен и честность ученого
В своем знаменитом эксперименте Милликен анализировал движение мельчайших заряженных капелек масла и сделал вывод о дискретности электрического заряда капель и о его элементарной величине, равной заряду электрона. Есть основания полагать, что Милликен использовал
результатами экспериментов, подгоняя их под теоретические представления. Но никто из этих критиков не упоминает о фотоэффекте. Своими экспериментами американский ученый пытался опровергнуть теорию Эйнштейна. Сам Милликен говорил на этот счет: «Я потратил десять лет моей жизни на проверку этого эйнштейновского уравнения 1905 года и вопреки всем моим ожиданиям вынужден был в 1915 году безоговорочно признать, что оно экспериментально подтверждено, несмотря на его несуразность» (Милликен имел в виду несуразность квантовой теории). Случай с фотоэффектом подтверждает высокую научную честность Милликена и его готовность принять факты, даже когда они противоречат его идеям.
Нобелевская премия за новую физику
Планк выдвигался на Нобелевскую премию в области физики в 1907 и в 1908 годах. Ни в тот, ни в другой раз он не получил награды. В 1908 году он был близок к премии благодаря поддержке великого шведского физика и химика Сванте Аррениуса (1859-1927), который считал, что Нобелевская премия должна признать успехи атомной теории материи, а Планк занимал центральное положение в этой сфере. Но в комитете возникла дискуссия о том, должен ли Вин разделить премию с Планком, так как именно закон Вина стал определяющим для работы Планка. Кроме того, закон Планка, хоть и был подтвержден экспериментально, не имел теоретической базы. В апреле 1908 года Лоренц настаивал, что существующие законы физики не приводят к формуле Планка. Лоренц на тот момент был ведущим специалистом по теоретической физике с мировым именем, и его авторитет заставил комитет сомневаться.
Через десять лет доверие к квантовой гипотезе возросло, и в 1919 году Планк получил Нобелевскую премию в области физики за 1918 год (в годы войны премии не вручались). Нобелевский комитет признавал, что Планк был номинирован большее количество раз, чем другие кандидаты. Ведущие физики-теоретики тех лет — Лоренц, Эйнштейн, Борн, Вин, Зоммерфельд — поддержали его кандидатуру. Сейчас кажется логичным, что Планк первым из основателей квантовой теории был удостоен Нобелевской премии. Затем премии были присуждены Эйнштейну и Бору, позже — другим теоретикам квантовой физики. Возможно, в этом списке, включающем имена Гейзенберга, Шрёдингера, Дирака, Паули и Борна, не хватает имени Арнольда Зоммерфельда (1868-1951).
В 1919 году Нобелевскую премию получил и Йоханнес Штарк (1874-1957). Этот ученый симпатизировал радикальным правым политическим партиям, а впоследствии открыто сотрудничал с нацистским режимом. В конце Второй мировой войны он был приговорен к четырем годам трудового лагеря.
Планк и Штарк отправились в Стокгольм в компании еще одного великого ученого той эпохи — химика Фрица Габера (1868-1934), получившего Нобелевскую премию в области химии годом раньше. Габер открыл в 1909 году процесс синтеза аммиака из водорода и азота. Это позволило Германии организовать производство нитратов для удобрений, а во время войны синтез аммиака применялся для изготовления взрывчатых веществ. Габер также играл важную роль в разработке военных технологий в ходе Первой мировой войны, так как сознательно занимался производством отравляющих газов.