Чтение онлайн

на главную

Жанры

Революция в зрении. Что, как и почему мы видим на самом деле
Шрифт:

Рис. 10.

Радуга — не самый удачный способ изображения оттенков. На ней отсутствуют пурпурные тона, и она не отражает тот факт, что цветовые переходы образуют кольцо: красный плавно перетекает в фиолетовый через пурпурный.

Рис. 11.

Оттенок и насыщенность (два цветовых измерения помимо яркости) вместе образуют плоский диск, где оттенок — координата на окружности, а насыщенность — расстояние от центра.

Рис. 12.

Этот плоский диск аналогичен тому, который мы видели на предыдущем рисунке, с той лишь разницей, что теперь он показывает не местоположение на окружности (оттенок) и не расстояние от центра (насыщенность). Вместо этого на нем изображены две координатные прямые: желто-синяя (вертикальная) и красно-зеленая (горизонтальная).

Они иллюстрируют свойственный нашему цветовосприятию цветовой антагонизм: на противоположных сторонах круга находятся оттенки, которые воспринимаются нами как антиподы. Наш мозг ощущает переход от красного к зеленому благодаря сопоставлению сигналов, получаемых от колбочек, чувствительных к длинноволновому (i-колбочки) и средневолновому (М-колбочки) свету: чем выше активность L-колбочек по сравнению с M-колбочками, тем краснее видимый нами оттенок, а чем выше активность M-колбочек по сравнению с L-колбочками, тем больше мы видим зеленого. Что же касается различий на сине-желтой оси, то их мозг воспринимает, сопоставляя сигналы от колбочек, чувствительных к коротковолновому свету, то есть S-колбочек, и усредненным значением сигнала от колбочек двух других типов: чем выше активность S-колбочек по сравнению со всеми остальными, тем больше мы видим синего, а чем она меньше, тем больше мы видим желтого.

Рис. 13.

Без дополнительного типа колбочек, имеющегося у трихроматов (справа), большинству млекопитающих недостает одного из цветовых измерений: красно-зеленой оси координат. У них есть всего два измерения: яркость и единственное собственно цветовое измерение — ось, идущая от желтого к синему через серый.

Рис. 14.

Чувствительность колбочек имеющихся у нас трех типов (S, М и L) к разным длинам волн. Можно видеть, что колбочки УМ и L обладают практически одинаковой чувствительностью (максимально возбудимы при длинах волн, равных соответственно 535 и 562 нм). Также показан типичный спектр отражения человеческой кожи. Его отличительной чертой является изгиб в виде буквы W, образуемый графиком на уровне, соответствующем приблизительно 550 нм. Обратите внимание на то, что левое нижнее колено и срединный пик этой W примерно совпадают со значениями максимально высокой чувствительности колбочек M и L, соответственно. Своей W-образной формой кривая обязана окисленному гемоглобину крови. Именно благодаря тому, что S- и L-колбочки наиболее чувствительны к этим, а не каким-то иным, длинам волн, мы способны с легкостью замечать даже незначительные изменения цвета кожи.

Рис. 15.

Спектр кожи, воспринимаемый сетчаткой (то есть после прохождения через все глазные фильтры), меняется в зависимости от показателей подкожной крови. Синий и желтый графики характерны соответственно для кожи с высоким и низким содержанием крови (точнее, гемоглобина). Обильное кровоснабжение сдвигает И/-образный зигзаг на графике вниз, а недостаток крови — вверх. Красная кривая соответствует высокому уровню оксигенации подкожной крови, зеленая — низкому. Колебания претерпевает лишь один участок спектра — область “буквы ИГ. Рассчитав разницу между суммарными активностями колбочек типов L и /И, можно оценить уровень содержания кислорода в крови. Обратите внимание на то, что изменение оксигенации мало затрагивает высоту местоположения W на графике, то есть колебания концентрации кислорода слабо влияют на изменение оттенка кожи по желто-синей оси. Сравнивая усредненную активность M-колбочек и L-колбочек с активностью S-колбочек, головной мозг способен делать выводы об интенсивности кровоснабжения кожи.

Рис. 16.

На каждом из четырех графиков показан спектральный состав отраженного от кожи света после его прохождения через глаз (то есть непосредственно в том виде, в каком он достигает колбочек). Синий и желтый графики показывают, как изменяется этот спектр отражения в зависимости от интенсивности кровоснабжения кожи. Основные изменения затрагивают область 550 нм, где график образует W-образный зигзаг, местоположение которого на графике тем ниже, чем больше крови накапливает кожа. Вот почему кожа, содержащая избыток крови, кажется синей: совокупная активность колбочек типов М и L понижается, а уровень активации S-колбочек остается неизменным. Красный и зеленый графики помогают понять, каким образом на тот же самый спектр отражения влияют колебания концентрации кислорода в крови. Основные изменения снова затрагивают область 550 нм, но теперь различия связаны не с местоположением, а с формой кривой: чем более кровь обогащена кислородом, тем выраженнее W-образный зигзаг, который при деоксигенации исчезает. Поскольку центральный пик этой W примерно соответствует той длине волны, к которой колбочки типа L максимально чувствительны, получается, что чем выраженнее W-образная форма, тем более возбуждены i-колбочки по сравнению с M-колбочками и тем более красной кажется нам кожа. Функция этих двух типов колбочек заключается в том, чтобы улавливать различия на красно-зеленой оси цветового пространства (в том числе отражающие и изменения концентрации кислорода в крови), не создавая при этом помех для нашей древней, свойственной всем млекопитающим способности ориентироваться в сине-желтом измерении (позволяющей, помимо прочего, оценивать интенсивность кровоснабжения кожи).

Кто-то, возможно, возразит, что зеленый это и есть желто-синий, ведь всем известно, что если смешать желтый с синим, получится зеленый. Это так: если физически добавить желтую краску к синей, цвет получившейся смеси с большой вероятностью будет близок к тому, что мы называем зеленым. Но, видя чистый зеленый тон, мы не можем сказать, будто он нам кажется смесью желтого с синим. В то же время пурпурный выглядит

так, будто бы в нем содержатся и синий, и красный, а оранжевый воспринимается нами как смесь красного с желтым. То есть нет цвета, который казался бы нам смесью желтого с синим (зеленый не подходит — он выглядит так, будто в нем нет ни желтого, ни синего), как не существует и такого цвета, в котором мы видели бы опенки одновременно красного и зеленого.

Итак, у нас в голове красный цвет визуально не смешивается с зеленым, а синий — с желтым. Получается, что в нашем восприятии возможны только четыре комбинации основных цветов: сине-зеленый, зелено-желтый, желто-красный и красно-синий. Почему в нашем сознании одни оттенки способны смешиваться, а другие нет? Геринг пришел к заключению, что синий с желтым и зеленый с красным должны представлять собой пары перцепционных противоположностей. Важнейшим свойством противоположностей является то, что их сочетание лишено смысла. Например, человек может быть одновременно высоким и веселым, но нельзя быть сразу веселым и грустным, как и высоким коротышкой. Бесполезно рассматривать какой-либо оттенок в качестве сочетания синего и желтого цветов, и это подсказывает нам, что в нашем восприятии синий является противоположностью желтого. То же справедливо и для пары красный/зеленый. Таким образом, синий с желтым должны располагаться на противоположных сторонах диска, изображенного на рис. и, и зеленый с красным тоже. Для начала неплохо: мы знаем, как расположить синий относительно желтого и красный относительно зеленого. Но как расположить на круге красный и зеленый относительно желтого и синего? Красный — чистый оттенок, не содержащий ни синего, ни желтого, и потому он в равной степени несходен с ними обоими. Таким образом, на цветовом круге красный должен быть равноудален от желтого и от синего. А поскольку зеленый — антагонист красного, он тоже должен находиться на одинаковом расстоянии от синего и желтого, только с противоположной стороны. Таким образом, мы получаем цветовой круг, где синий, зеленый, желтый и красный цвета расположены через одинаковые промежутки, равные 90° (см. иллюстрации, давно предвосхитившие этот только что сделанный нами вывод). Соответственно, любой из промежуточных оттенков находит свое место на одной из четырех четвертей получившегося диска (рис. 12).

Теперь, когда мы знаем, как оттенки располагаются на цветовом диске, разрешите предложить вам новый способ рассуждать о субъективном восприятии цвета. Этот подход даст нам возможность понять, почему мы, приматы, видим палитру красок более широкую по сравнению с прочими млекопитающими. Вместо того чтобы использовать те категории, которые представлены на рис. и — положение на круге (тон) и удаленность от центра (насыщенность), - можно поступить проще: провести две координатные прямые, вроде осей x и y, как на рис. 12. Одной из этих прямых будет сине-желтая ось, соединяющая чистый синий тон с чистым желтым (его антагонистом) и проходящая через серый центр круга. На рис. 12 эта линия представлена в виде вертикальной оси (у). Серый цвет на этой оси можно приравнять к нулю, синие оттенки считать положительными значениями, а желтые — отрицательными (желтый — это как бы синий со знаком минус). Второй координатной прямой будет красно-зеленая ось, соединяющая чистый красный с чистым зеленым (его антагонистом) и тоже проходящая через серый. На рис. 12 она представлена в виде горизонтальной оси (х). За нуль мы снова примем серый цвет. Красные оттенки будем считать положительными значениями, зеленые — отрицательными (зеленый — это красный со знаком минус). Иначе говоря, два измерения диска могут быть описаны не только через тон и насыщенность, но и при помощи двух перпендикулярных осей — вертикальной и горизонтальной, образующих систему координат. Существует и третья перпендикулярная линия, на рис. 12 не показанная, — черно-белая ось, которая показывает степень яркости.

Данные оси координат помогают уяснить, как устроено наше цветовосприятие. Без них нелегко было бы разобраться и в том, что именно происходит у нас в глазу, когда он видит тот или иной оттенок. Помните колбочки, упоминавшиеся в начале главы? Колбочки трех типов — S, М и L — это нейроны, которые активируются при воздействии световых лучей соответственно с короткими, средними и длинными волнами. С их помощью глаз производит вычисления трех видов. Каждый имеет отношение к одной из трех перпендикулярных осей: черно-белой (яркости), сине-желтой и красно-зеленой. Если не вдаваться в детали, то ваше восприятие яркости (колебаний от черного к белому) отражает суммарное число активированных колбочек трех типов (хотя, судя по всему, наибольший вклад вносят колбочки М и L): чем больше колбочек активировано, тем выше воспринимаемая яркость. Восприятие колебаний от синего к желтому зависит от разницы между активацией S-колбочек и усредненным значением активации M- и L-колбочек. Когда колбочки S-типа активированы сильнее, чем типов M и L, вы видите синий цвет, когда наоборот — желтый. А восприятие оттенков на красно-зеленой оси основано на различии между активацией L-колбочек и M-колбочек: чем сильнее активированы колбочки типа L по сравнению с колбочками типа М, тем больше красного мы видим. И наоборот: чем слабее активированы L-колбочки и сильнее — M-колбочки, тем больше нам видится зеленого.

Теперь самое время объяснить, чем картина мира приматов, обладающих цветовым зрением, отличается от того, что видит большинство прочих млекопитающих. Цветовое пространство типичного млекопитающего (включая тех приматов, у которых цветовое зрение отсутствует) не похоже на описанное выше. Ему не хватает целого измерения, поскольку обычно млекопитающие обладают колбочками не трех типов, а лишь двух. Вместо М и L у них всего один тип колбочек — М/L. Альтернативного механизма, отвечающего за различение зеленого и красного, они не имеют и потому не воспринимают оттенков на красно-зеленой оси. Эта ось — эволюционное новшество, возникшее у обладающих цветовым зрением приматов. То, что для нас является двухмерным диском (рис. 12), с точки зрения наших предков-дальтоников представляло собой одномерную прямую линию. Наше восприятие цветов можно представить в виде трехмерного двойного конуса (рис. 13, справа), а аналогичную схему цветового восприятия типичного млекопитающего — в виде плоского двухмерного ромба (рис. 13, слева). В результате обладающие цветовым зрением приматы видят бесконечное количество оттенков, плавно переходящих один в другой, а млекопитающие с дихроматическим зрением различают всего два тона: желтый и синий. Следовательно, цветовое зрение обычных млекопитающих существенно беднее нашего — вот почему мы утверждаем что оно у них отсутствует.

Поделиться:
Популярные книги

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Ненастоящий герой. Том 1

N&K@
1. Ненастоящий герой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Ненастоящий герой. Том 1

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Проданная невеста

Wolf Lita
Любовные романы:
любовно-фантастические романы
5.80
рейтинг книги
Проданная невеста

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Огненный князь 3

Машуков Тимур
3. Багряный восход
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Огненный князь 3

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

Прогрессор поневоле

Распопов Дмитрий Викторович
2. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прогрессор поневоле

Системный Нуб 4

Тактарин Ринат
4. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб 4

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4