Чтение онлайн

на главную

Жанры

Резьба по дереву. Техники, приемы, изделия
Шрифт:

Существует также способ деления окружности на 5 частей с помощью транспортира. К радиусу R окружности необходимо приложить транспортир, построить центральный угол 72° (360: 5 = 72) и провести из центра прямую линию до точки ее пересечения с окружностью. Полученную точку необходимо соединить с точкой пересечения радиуса R на окружности – данный отрезок будет стороной пятиугольника. Проведя из обеих точек дуги радиусом, соответствующим длине данного отрезка, можно разделить окружность на 5 частей.

Деление на 6 и 12 частей (рис. 12, е). Из точек пересечения окружности с вертикальным диаметром проводят две дуги, радиус которых равен

радиусу окружности. Пересечение дуг на окружности образует точки, которые последовательно соединяются хордами. В результате образуется вписанный в окружность шестиугольник. Для разделения окружности на 12 частей делают такое же построение, но только на двух взаимно перпендикулярных диаметрах.

Деление на 7 частей (рис. 12, ж). Из конца любого диаметра проводят вспомогательную дугу радиусом R. Через точки ее пересечения с окружностью проводят хорду, равную стороне правильно вписанного треугольника (как на рис. 12, а). Половина хорды равняется стороне вписанного в окружность семиугольника. Теперь достаточно последовательно отложить на окружности несколько дуг радиусом, равным половине хорды, чтобы разделить окружность на 7 частей.

Деление на любое количество частей (рис. 13). В данном случае окружность разделена на 9 частей.

Через центр окружности проводят две взаимно перпендикулярные прямые. Один из диаметров, например CD, по линейке делят на нужное количество равных частей (в данном случае 9), точки нумеруют. Далее из точки D проводят дугу радиусом, равным диаметру данной окружности (2 R), до пересечения с перпендикулярной прямой АВ. Из точек пересечения А и В проводят лучи, но так, чтобы они проходили только через четные или только через нечетные (как в данном случае) номера. При пересечении с окружностью лучи образуют точки, которые делят окружность на нужное количество частей (в данном случае 9).

Рис. 13. Деление окружности на любое заданное количество частей.

Сопряжения

Сопряжение двух полос разной ширины изображено на рис. 14, а. Радиус внешней дуги задается или подбирается. Точки сопряжения прямой и дуги (во всех случаях) лежат на перпендикуляре, опущенном из центра дуги на прямую. Заметим кстати, что точки сопряжения двух любых дуг находятся на линии, соединяющей их центры.

Построение окружности большого диаметра

Построение окружности небольшого диаметра производят с помощью циркуля, что не вызывает затруднений. В то же время возможность построения окружности большого диаметра ограничена размером циркуля. Выйти из затруднения поможет комбинация из карандаша, нити и гвоздя (рис. 14, б). Радиус окружности в этом случае регулируется длиной нити.

Рис. 14. Сопряжения, окружности и овалы: а – выполнение сопряжения линий; б – построение окружности большого диаметра; в – определение центра окружности методом отрезков; г – определение центра окружности с помощью прямоугольных треугольников; д – построение овалов в пропорции золотого сечения; е – построение овалов по заданным осям; ж – построение овоида.

Определение центра окружности

Один из способов определения центра окружности представлен на рис. 14, в: на окружности выбирают любые три точки (А, В, и С), соединяют их двумя или тремя отрезками и делят эти отрезки пополам с помощью перпендикуляра к ним. Точка пересечения перпендикуляров является центром окружности. Чем ближе отрезки к диаметру окружности, тем точнее получится результат построения.

Второй способ (рис. 14, г) основан на том, что любой прямой угол, вершина которого находится на окружности, опирается на ее диаметр. Несколько таких прямых углов, построенных с помощью угольника, определят центр окружности – это будет точка пересечения гипотенуз прямоугольных треугольников.

Подобное построение удобно для определения центров на больших окружностях или на торцах цилиндров, например на спилах ствола дерева. Построение будет точнее, если гипотенузы треугольников пересекаются под углом, близким к прямому.

В обоих случаях найденный центр окружности желательно проверить с помощью циркуля.

Построение овалов

Существует несколько способов построения овалов. Один из них заключается в сопряжении дуг. Если овал задан его длиной, то построение лучше делать в пропорции золотого сечения, как показано на рис. 14, д. Отрезок АВ делят на четыре части, в результате чего образуются точки О1 и О2. Центр О3 получается в точке пересечения дуг из О1 и О2 радиусом, равным величине отрезка О1О2. Чтобы построить более широкий овал, отрезок АВ необходимо разделить на 3 части.

Построение овала по заданным осям показано на рис. 14, е. Центры сопрягаемых дуг в данном случае находятся на линии, которая проходит через середину отрезка АЕ. Последовательность построения отрезка АЕ обозначена цифрами 1 и 2.

Построение овоида

Овоид – овал, имеющий одну ось симметрии. Построение овоида показано на рис. 14, ж, где последовательность выполнения обозначена цифрами 1, 2, 3. Чтобы овоид был более удлиненным, центры дуг О1 и О2 отдаляются. Их положение определяется по желанию.

Построение эллипсов

Силуэты овала и овоида не всегда устраивают резчика. Более строгую форму имеет эллипс. Самое простое и распространенное построение эллипса показано на рис. 15, а.

В данном случае производят обвод карандашом с помощью нити, концы которой прикреплены к гвоздикам. Гвоздики вбивают в точки фокусов эллипса F1 и F2. Длина нити должна соответствовать длине отрезка АВ. Форма эллипса определяется отношением его осей. Фокусы эллипса при этом располагаются следующим образом: из точки D циркулем делают засечки на отрезке АВ. Радиус циркуля должен быть равен отрезку АО, то есть большой полуоси. Этот способ очень удобен для построения крупных эллипсов или же тогда, когда есть возможность забить в основу гвозди. Следует отметить, что данное построение может быть не всегда точным.

Поделиться:
Популярные книги

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Пятое правило дворянина

Герда Александр
5. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пятое правило дворянина

Менталист. Эмансипация

Еслер Андрей
1. Выиграть у времени
Фантастика:
альтернативная история
7.52
рейтинг книги
Менталист. Эмансипация

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Изгой. Трилогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
8.45
рейтинг книги
Изгой. Трилогия

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Береги честь смолоду

Вяч Павел
1. Порог Хирург
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Береги честь смолоду

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды