Резерфорд
Шрифт:
Больше того — он должен был признаться: «Перед началом исследования у меня не было уверенности, становится ли железо магнитным в очень быстро колеблющихся полях или нет».
Может почудиться, что эта неуверенность была чисто психологической: авторитеты молчат, а он, юноша, должен произнести свое «да» или «нет». Однако не в молчании авторитетов было дело. Его смущало нечто неведомое в самом существе явлений. И потому он волновался. Засиживался в лаборатории. Без конца варьировал опыты.
В результате нескончаемых измерений с разными колебательными контурами он услышал, наконец, то, что чаял услышать: многократно подтвержденное «да»! Среди выводов его диссертации есть строки:
В этом исследовании, начавшемся
Сегодня мы сказали бы: «500 миллионов герц» или «500 мегагерц». Сегодня это обычное обозначение радиочастот на светящихся шкалах многоламповых приемников. Но в те времена единица частоты колебаний еще не была названа по имени молодого профессора Боннского университета. В те времена самого слова «радио» еще не было в обиходе человечества. И хотя Герц сразу стал популярен до чрезвычайности, мысль о трансляции и приеме электромагнитного излучения еще казалась еретической. Влекущей и еретической!
К таким рубежам науки, как на старт интернационального кросса, первой спешит молодежь. Эрнст Резерфорд еще на четвертом курсе вышел на этот рубеж. У его диссертации была своя маленькая история.
Секретарь студенческого Научного общества Кентерберийского колледжа, избравший равнодействующую между Биккертоном и Куком, сдержал обещание, которое дал в своей «тронной речи». Он прочитал в обществе доклад о работах господина Герца — об электрических волнах и колебаниях. И продемонстрировал неотразимо доказательные опыты господина Герца. И он так сжился с кругом идей немецкого физика, что на кафедре вдруг представился самому себе не студентом-докладчиком, а едва ли не провозвестником этих новых физических истин. Он даже потерял в тот день чувство юмора — в протокольном дневнике Научного общества появилась выведенная его рукой довольно самоуверенная фраза об экспериментах, «выполненных мистером Резерфордом при ассистентуре м-ра Пэйджа и м-ра Эрскина».
Для такого необычного самоощущения была у него, однако, немаловажная причина: томившее его желание как-то продолжить замечательные искания Герца было уже небеспредметным — в голове бродил конструктивный замысел.
…Пусть вон там, в дальнем конце аудитории или даже за ее стенами, отчалят от герцевского вибратора — источника электрических колебаний — невидимые электромагнитные волны. Движущиеся сквозь пространство со скоростью света, они через ничтожную долю секунды будут уже здесь, у этой кафедры. Но как установить их приход? Какое физическое действие могли бы вызвать эти волны Герца? В каком приборе они сумели бы породить воочию наблюдаемый эффект? Найти бы такое действие, нащупать бы такой эффект… Тогда можно было бы создать детектор электромагнитных волн, регистрирующий их приход даже из далекого далека.
Его мысль работала просто — она искала путь прямо к сердцу проблемы.
В те времена электромагнитное поле еще не рассматривали как физическую субстанцию — как разновид; ность самой материи. Оно рисовалось физикам чередой возмущений в некоем упругом эфире. В каждой точке эфира, куда успела дойти волна возмущений, как бы начинали качаться два маятника — электрический и магнитный. Один — вверх-вниз, другой — вправо-влево. И начинали они качаться с той же частотой, с какою где-то вдали — в источнике электромагнитного поля — колебались электрические заряды.
Максвелл дал математическое описание этого круга незримых физических событий. Его теория появилась за семь лет до рождения Эрнста. Вначале непонятая и принятая даже иронически, она была одним из самых бесстрашных и самых красивых созданий физико-математического гения. Существование электромагнитных волн, распространяющихся со скоростью света, вытекало из нее само собой.
Замысливший создание уловителя этих невидимых волн, молодой
Рассказал ли он о своем замысле на том заседании Научного общества, когда ему милостиво ассистировали м-р Пэйдж и м-р Эрскин? Неизвестно. Неизвестно и другое: вполне ли созрел тогда этот замысел. Одно очевидно: он приступал к своей диссертации уже одержимый пьянящей идеей.
Сегодня мы назвали бы ее идеей радиосвязи!
Оттого-то все досаждающее оборачивалось в конце концов светлой стороной. Не батарея Грове была хороша, и не машина Фосса, и не рутина измерений, и не фантазии Биккертона, и не расставания с Мэри под зимним ветром… — замысел был хорош! Хороша была идея! Чаяния были хороши, и молодость, и жизнь, и вера в себя, и вера в будущее…
Все получалось, как он и надеялся втайне. Исчезали самые серьезные сомнения. Магнитный маятник высокочастотного разряда работал: намагничивал стальные иглы! Или размагничивал, если предварительно они были доведены до магнитного насыщения. Это было для него всего важнее: такой эффект легче поддавался количественному наблюдению. И он проникся уверенностью, что электромагнитные колебания, приходящие издалека, будут работать точно так же, как быстропеременное поле внутри стеклянной трубочки его соленоида.
Неспроста дошел он до регистрации частот в 500 миллионов колебаний в секунду: он знал, что с электромагнитной радиацией именно такой частоты (это волны длиною в 60 сантиметров) проводил свои заключительные эксперименты Герц. Впрочем, наш новозеландец высказал надежду, что железные намагниченные иглы будут «откликаться» на любую частоту — от 100 до 1 000 000 000 колебаний в секунду. Он верил в универсальность задуманного им детектора электромагнитных волн.
Лодж, Томсон, Троубридж… — у них не было цели, которая влекла молодого Резерфорда. И даже у Генриха Герца ее еще не было. Он не успел этой целью задаться. Просто не успел. Его, тридцатисемилетнего, не сумели спасти от заражения крови. Он умер слишком рано. Это случилось 1 января 1894 года, когда в Европе стояла зима, а в Новой Зеландии лето, и бакалавр искусств Резерфорд в Пунгареху как раз готовился к работе над своей магистерской диссертацией.
Так не оттого ли, что у его предшественников не было вдохновляющей цели, их данные о магнетизации высокочастотным разрядом оставались туманными и противоречивыми? Не было повелевающего стимула для устранения противоречий и прояснения тумана.
А двадцатитрехлетний Эрнст Резерфорд не мог не дойти до конца — ему было зачем идти!
Разумеется, он тогда не знал, что вышел на старт интернационального радиокросса. Не знал, что на другой стороне планеты, в глубине Финского залива, в Кронштадте, на маленьком острове вблизи Санкт-Петербурга, молодой инженер-физик уже многое сделал, чтобы вскоре осуществить передачу и прием первой в мире радиограммы: «Генрих Герц». Не знал, что в Италии уже мучился той же дурманящей идеей юноша, чьи успехи и предприимчивость должны были впоследствии сыграть немалую роль в его, Эрнстовой, судьбе.
Резерфорд не знал, что вышел на старт вторым.
Первым был Александр Попов. Третьим — Гульельмо Маркони.
Все это выяснилось позднее. Гораздо позднее. Попов и Маркони, выбрав иной путь воплощения того же высокого замысла, блистательно исполнили свою историческую миссию. А он?
То, что вышел он на старт не один и не первый, оказалось везением человечества: дело Максвелла — Герца было прекрасно завершено другими, а напор пионерской мысли новозеландца понадобился истории для иных начинаний. Его гений словно бы освободился для иных великих дел. Это тоже выяснилось позднее.