Роскон 2017. Атомный панк: война в космосе
Шрифт:
Лунный кислород по массе составляет до 40% состава реголита. Он в буквальном смысле этого слова побочный результат добычи любого минерального сырья на Луне. При сколько-то развитом комплексе Земля орбитальная - Луна орбитальная - точки Лагранжа он моментально становится крайне востребованным.
Химические кислород-водородные двигатели требуют довольно мало жидкого водорода и очень много жидкого кислорода. Составляет он порядка 88% содержимого топливных баков. Комплекс по его добыче при этом умещается в считанные тонны. Если этот кислород появляется на орбите Земли с Луны, транспортная
Они, впрочем, не обязаны.
Самый крупный разведанный запас водяного льда на Луне примерно равен ладожскому озеру. Правда и обнаружить его на протяжении двадцатого века не смогли. Экваториальные области Луны суше плиты бетона в Сахаре в жаркий день. Искать требовалось на полюсах. Но едва лишь спутниковая разведка занялась своим делом, индийский ресурсный спутник "Чандраян-1" немедленно обнаружил искомые богатства.
Обнаружил с избытком.
Помимо того, что "Лунная Ладога" в кратерах полярных регионов содержит достаточно большие запасы льда и весь спектр минеральных богатств реголита, там есть и ещё один, куда более ценный ресурс.
Свет.
В полярных регионах Луны достаточно высокие стенки кратеров освещены солнцем постоянно. И солнечная жидкометаллическая электростанция, и поле солнечных батарей, и система зеркал солнечной печи в таком регионе работают без перерыва на лунную ночь и крайне эффективно.
Если в такой печи расплавить дроблёный реголит, а после отлова газов и осаждения на холодных пластинах лёгких металлов вроде алюминия, пропустить через расплав ток, на электродах соберётся металл.
Получаемый в избытке лунный алюминий, плюс титан и магний - триада "аэрокосмических" материалов. При лунном избытке дешёвого электричества они достаточно просты в добыче и обработке. Алюминий при этом составит ещё и основу лунной электротехники.
Что ещё важнее, для лунных условий алюминий при горении в жидком кислороде становится пусть и плохоньким, но целиком местным ракетным топливом. Да, соотношение масс орбитальной лунной ракеты на алюминий-кислородном двигателе составляет не меньше 2,4. Возвращаемой многоразовой - 3,5. Но в обозримые сроки жизни постижимой нашим сознанием человеческой цивилизации это топливо на Луне просто не кончится.
То есть, вот совсем.
Лунный алюминий составляет от 10 до 18 процентов состава реголита. Для сравнения, лунный титан встречается далеко не везде, исключительно в составе титановых базальтов, а его высокой концентрацией считаются 6-8%
Самый простой лунный добывающий комплекс из примерно 30 тонн оборудования может производить в готовые к использованию лунные материалы буквально тоннами. Речь идёт о трёх многофункциональных колёсных машинах массой около тонны каждая, трёх наборах сырьевой разведки и паре трёхтонных экскаваторов. Неподвижную часть комплекса составят центральная электростанция на 60 киловатт, шесть солнечных печей площадью в 90 квадратных метров каждая, электрическое хозяйство, рудный сепаратор, криогенная установка сжижения кислорода, пресс, теплорадиаторы и набор из 4000 поставленных с Земли готовых вентилей для кислородных баллонов.
Расчётная деятельность одного такого комплекса принесёт около 2400 тонн материалов в год. 848 кубометров жидкого кислорода в штампованных на месте алюминиевых баках, 128 кубометров водяного льда в местных же алюминиевых контейнерах, 527 тонн металла сверх необходимого для изготовления тары (железо, алюминий, титан...), 480 тонн кремния, неизвестное (как повезёт) количество азота, редких металлов и летучих веществ и порядка 217 тонн шлака. Не исключено, что уже сразу в форме блоков.
Ну и наконец, стоит упомянуть лунный крип. Породу из калия, редкоземельных элементов и фосфора. Калий и фосфор - основа гидропоники, редкоземельные элементы - основа сложных высокотехнологичных материалов, а также хорошо знакомый любителям советской фантастики рубидий и лантаноиды.
Это, конечно, не значит, что проблем с добычей ресурсов не будет. Вовсе нет. Только вот и представлять Луну как бесполезную пустыню тоже не следует. Это крайне богатый и весьма удобно расположенный плацдарм, как для местного ресурсного снабжения ближнего космоса, так и для прыжка за дешёвыми космическими летучими веществами к Фобосу и Деймосу.
Космические углеводороды - это не только метан-кислородное ракетное топливо, но и дешёвый космический пластик. Один из самых востребованных современным человечеством материалов.
Цена перелёта с орбиты Луны на орбиту Марса при этом не сильно превышает цену перелёта в системе орбит Земли и Луны. Различается только время полёта.
Но отложим пока межпланетные вылеты. Давайте вернёмся к тому, что ещё сулит масштабное промышленное освоение Луны.
Примитивное орбиталище с имитацией бортовой силы тяжести вращением предлагали ещё в рамках "проекта Горизонт". Более сложные концепции достигли своего логического пика в середине 1970ых, когда Джерард О'Нил проработал основы конструкций долговременных орбитальных станций, пригодных для полноценной жизни двух тысяч человек, десяти тысяч, а потом и в несколько раз большего их количества.
Примечательны эти проекты в первую очередь тем, что в их основе реальные технологии своей эпохи без единого магического конструкционного материала. Любой проект О'Нила упирается преимущественно в транспортную проблему и минимальный размер лунной инфраструктуры необходимой для его строительства.
Заброс на Луну трёхсот квалифицированных строителей при технике и нескольких атомных энергостанциях позволял строительство преимущественно на местных ресурсах даже настоящей мега-структуры.
Для понимания масштаба - бублик диаметром в 200 метров и толщиной в 100 при массе около полумиллиона тонн может вместить тридцать тысяч жителей при 100 кубометрах на человека. При сокращении их численности втрое, жизнь на борту окажется примерно такой же комфортной, что и в хорошем "зелёном" пригороде. Скорость вращения при этом составит достаточно комфортные 3 оборота в минуту. При увеличении диаметра её можно понизить ещё сильнее, но это увеличит требования к размерам и массе радиационного щита. Для двухсотметровой станции масса защиты от космической радиации составит ещё порядка 375 тысяч тонн.