Рождение сложности: Эволюционная биология сегодня
Шрифт:
Таким образом, различные сплайс-варианты белка DSCAM в известной мере аналогичны антителам позвоночных (хотя антитела, конечно, более избирательны и эффективны). Образование разнообразных сплайс-вариантов DSCAM осуществляется на основе того же комбинаторного принципа, что и образование антител у позвоночных. В обоих случаях используются случайный выбор и комбинирование отдельных фрагментов гена, каждый из которых представлен в геноме в виде нескольких альтернативных вариантов. Только у позвоночных это "перекраивание" генетической информации осуществляется на уровне ДНК, а у насекомых — на уровне РНК.
Это исследование, на мой взгляд, представляет собой крупный прорыв не только в изучении иммунной системы беспозвоночных, но
Каждая нервная клетка имеет десятки и сотни отростков, которые в ходе развития организма соединяются в строго определенном порядке. Как отростки нейронов находят друг друга и что позволяет им не ошибиться? Оказалось, что важную роль в этом играет иммунологический механизм различения "своих" и "чужих*.
За рамками исследования осталось множество важных вопросов. Например, осталось неясным, каким образом осуществляется регуляция сплайсинга. Откуда комар "знает", какие варианты белка DSCAM нужно синтезировать для борьбы с кишечной палочкой, а какие — для защиты от стафилококка? В любом случае результат удивительный: целая иммунная система — в одном-единственном белке!
Второе недавнее открытие, связанное с белком DSCAM, позволило понять, какую роль играет это биохимическое чудо в развитии нервной системы.
До сих пор было известно только то, что у насекомых с мутациями в гене DSCAM нервная система развивается неправильно. Механизм участия DSCAM в индивидуальном развитии был неясен, хотя "общую идею" нетрудно было угадать. Чтобы из делящихся клеток зародыша, которые все имеют одну и ту же заложенную в них "программу поведения" (геном), сформировалась не аморфная клеточная масса, а сложный организм, эти клетки должны знать, в какую сторону им расти или переползать, к кому приклеиваться, а от кого, напротив, отделяться. Для этого им нужно как-то узнавать друг друга, понимать, кто есть кто в их окружении. Такое взаимное узнавание клеток особенно важно в ходе развития нервной системы, чтобы отростки нейронов соединялись друг с другом правильным образом и формировали "правильные" нервные контуры и сети.
Что касается белков иммуноглобулинового надсемейства, то они как раз и специализируются на выполнении задач такого рода, то есть на персональной идентификации и различении "своих" и "чужих". Поэтому можно было предвидеть, что для этих белков найдется работа не только в иммунной системе, но и в других ситуациях, когда нужно разбираться, кто есть кто в клеточном или социальном окружении (О "социальном окружении" я упомянул не случайно. Оказывается, позвоночные животные (а возможно, и не только они) широко используют иммуноглобулиновые белки для персональной идентификации. Например, белки так называемого "главного комплекса гистосовместимости" составляют важнейшую часть индивидуального запаха и, в частности, позволяют животным отличать родню от чужаков. Даже люди не совсем утратили эту способность. Подробности см. по адресу: http://evolbiol.ru/mate_recognition.htm). Однако, повторю, до недавнего времени никто не знал, каким именно способом белок DSCAM реализует эту функцию в ходе развития нервной системы.
В 2004 году у белка DSCAM было обнаружено очередное поразительное свойство (Wojtowicz W. М. et al. Alternative splicing of Drosophila DSCAM generates axon guidance receptors that exhibit isoform-specific homophilic binding // Cell. 2004. V 118. P. 619-633.).
Нетрудно догадаться, что эта удивительная особенность делает DSCAM идеальным молекулярным устройством для различения "своих" и "чужих". Оставалось выяснить, как это устройство используется при развитии нервной системы.
Биологи из Австрии и США в 2007 году получили ответ на этот вопрос при помощи генной инженерии (Daisuke et al. DSCAM diversity is essentialfor neuronal wiring and self-recognition // Nature. 2007. V 449. E. 223-227.). Они создали три линии генетически модифицированных мух, в каждой из которых ген DSCAM был радикально "упрощен". Из него были вырезаны все альтернативные наборы фрагментов-заготовок, кроме одного-единственного, разного в каждой из трех линий. Модифицированные мухи, таким образом, могли синтезировать только один сплайс-вариант белка DSCAM вместо 38 016.
Внесенные в геном изменения оказались летальными. Все мухи, у которых обе копии гена DSCAM были изменены (то есть гомозиготы), погибали на стадии личинки или куколки, и у этих личинок и куколок наблюдались серьезные нарушения в развитии нервной системы. Например, у нормальных мух в обонятельном отделе мозга имеются определенным образом расположенные узлы, к каждому из которых присоединяются отростки чувствительных нейронов определенного типа. У личинок-мутантов данный отдел мозга представлял собой беспорядочную массу нейронов, и отростки чувствительных клеток крепились к нему как попало. При этом ген DSCAM у этих личинок работал, и количество производимого белка DSCAM было таким же, как у здоровых насекомых. Результат был одинаков во всех трех генетически модифицированных линиях.
Авторы сделали вывод, что жизненно важным является не только белок DSCAM сам по себе, но и разнообразие его сплайс-вариантов.
Дальнейшие исследования показали, что каждый нейрон в норме производит свой собственный уникальный набор сплайс-вариантов белка DSCAM. Таким образом создается уникальная "визитная карточка" данного нейрона, что позволяет нейрону отличать свои собственные отростки от чужих.
При помощи сложных экспериментов удалось показать, что нейроны, способные синтезировать только один сплайс-вариант DSCAM, растут неправильно, если они окружены другими такими же мутантными нейронами, однако их рост становится совершенно нормальным, если их окружают обычные нервные клетки, производящие разные сплайс-варианты. Если нейрон вообще не производит белка DSCAM, он растет неправильно в любом клеточном окружении. От того, какой именно сплайс-вариант производят мутантные клетки, как выяснилось, ничего не зависит.
Таким образом, сплайс-варианты DSCAM нужны нервным клеткам для создания уникального "молекулярного паспорта", благодаря которому нейроны отличают свои собственные отростки от чужих.
Данное открытие подтверждает идею о том, что молекулярные системы различения "своих" и "чужих", основанные на иммуноглобулиновых белках, гораздо шире распространены в живой природе, чем думали когда-то, и роль их отнюдь не сводится к одной лишь иммунной защите. Осмелюсь предположить, что скоро нас ждут новые открытия в этой области.