Самоучитель UML
Шрифт:
Из перечисленных выше диаграмм некоторые служат для обозначения двух и более других подвидов диаграмм. При этом в качестве самостоятельных представлений в языке UML используются следующие диаграммы:
• Диаграмма вариантов использования (см. главу 4).
• Диаграмма классов (см. главу 5).
• Диаграмма состояний (см. главу 6).
• Диаграмма деятельности (см. главу 7).
• Диаграмма последовательности (см. главу 8).
• Диаграмма кооперации (см. главу 9). 1. Диаграмма компонентов (см. главу 10). 8. Диаграмма развертывания (см. главу 11).
Перечень этих диаграмм и их названия являются каноническими в том смысле, что представляют собой неотъемлемую часть графической нотации языка UML. Более того, процесс ООАП неразрывно связан с процессом построения этих диаграмм. При этом совокупность построенных таким образом диаграмм является самодостаточной в том смысле, что в них содержится вся информация, которая необходима для реализации проекта сложной системы.
Каждая из этих диаграмм детализирует и конкретизирует различные представления о модели сложной системы в терминах языка UML. При этом диаграмма вариантов использования представляет собой наиболее общую концептуальную модель сложной системы, которая является исходной для построения всех остальных диаграмм. Диаграмма классов является, по своей сути, логической моделью, отражающей
Диаграммы поведения также являются разновидностями логической модели, которые отражают динамические аспекты функционирования сложной системы. И, наконец, диаграммы реализации служат для представления физических компонентов сложной системы и поэтому относятся к ее физической модели. Таким образом, интегрированная модель сложной системы в нотации UML (рис. 3.10) представляется в виде совокупности указанных выше диаграмм (см. рис. 3.9).
Рис. 3.10. Интегрированная модель сложной системы в нотации UML
3.6. Особенности изображения диаграмм языка UML
Большинство перечисленных выше диаграмм являются в своей основе графами специального вида, состоящими из вершин в форме геометрических фигур, которые связаны между собой ребрами или дугами. Поскольку информация, которую содержит в себе граф, имеет в основном топологический характер, ни геометрические размеры, ни расположение элементов диаграмм (за некоторыми исключениями, такими как диаграмма последовательностей с метрической осью времени) не имеют принципиального значения.
Примечание 30
В ранней литературе по UML в качестве отдельной диаграммы рассматривалась еще диаграмма объектов. Однако в версии 1.3 она не включена в перечень канонических диаграмм, поскольку ее элементы могут присутствовать на диаграммах других типов. Поэтому описание отдельных элементов диаграммы объектов рассматривается ниже, при изучении основных канонических типов диаграмм в части II данной книги.
Для диаграмм языка UML существуют три типа визуальных обозначений, которые важны с точки зрения заключенной в них информации:
• Связи, которые представляются различными линиями на плоскости. Связи в языке UML обобщают понятие дуг и ребер из теории графов, но имеют менее формальный характер.
• Текрт, который содержится внутри границ отдельных геометрических фигур на плоскости. При этом форма этих фигур (прямоугольник, эллипс) соответствует некоторым элементам языка UML (класс, вариант использования) и имеет фиксированную семантику.
• Графические символы, изображаемые вблизи от тех или иных визуальных элементов диаграмм.
Таким образом, в языке UML используется четыре основных вида графических конструкций:
• Значки или пиктограммы. Значок представляет собой графическую фигуру фиксированного размера и формы. Она не может увеличивать свои размеры, чтобы разместить внутри себя дополнительные символы. Значки могут размещаться как внутри других графических конструкций, так и вне их. Примерами значков могут служить окончания связей элементов диаграмм или некоторые другие дополнительные обозначения (украшения).
• Графические символы на плоскости. Такие двумерные символы изображаются с помощью некоторых геометрических фигур и могут иметь различную высоту и ширину с целью размещения внутри этих фигур других конструкций языка UML. Наиболее часто внутри таких символов помещаются строки текста, которые уточняют семантику или фиксируют отдельные свойства соответствующих элементов языка UML. Информация, содержащаяся внутри фигур, имеет важное значение для конкретной модели проектируемой системы, поскольку регламентирует реализацию соответствующих элементов в программном коде.
• Пути, которые представляют собой последовательности из отрезков линий, соединяющих отдельные графические символы. При этом концевые точки отрезков линий должны обязательно соприкасаться с геометрическими фигурами, служащими для обозначения вершин диаграмм, как принято в теории графов (см. главу 2). С концептуальной точки зрения путям в языке UML придается особое значение, поскольку они являются простыми топологическими сущностями. С другой стороны, отдельные части пути или сегменты могут не существовать сами по себе вне содержащего их пути. Пути всегда соприкасаются с другими графическими символами на обеих границах соответствующих отрезков линий. Другими словами, пути не могут обрываться на диаграмме линией, которая не соприкасается ни с одним графическим символом. Как отмечалось выше, пути могут иметь в качестве окончания или терминатора специальную графическую фигуру – значок, который изображается на одном из концов линий, являющихся сегментами этого пути.
• Строки текста. Служат для представления различных видов информации в некоторой грамматической форме. Предполагается, что каждое использование строки текста должно соответствовать синтаксису в нотации языка UML, посредством которого может быть реализован грамматический разбор этой строки. Последний необходим для получения полной информации о модели. Например, строки текста в различных секциях обозначения класса могут соответствовать атрибутам этого класса или его операциям. На использование строк накладывается важное условие – семантика всех допустимых символов должна быть заранее определена в языке UML или служить предметом его расширения в конкретной модели.
Примечание 31
Все диаграммы в языке UML изображаются с использованием фигур на плоскости. Однако некоторые из фигур (например, кубы) могут представлять собой двумерные проекции трехмерных геометрических тел, но и в этом случае они рисуются как фигуры на плоскости. Хотя в ближайшее время предполагают включить в язык UML пространственные диаграммы, в рассматриваемой версии языка такая возможность отсутствует.
При графическом изображении диаграмм следует придерживаться следующих основных рекомендаций:
• Каждая диаграмма должна служить законченным представлением соответствующего фрагмента моделируемой предметной области. Речь идет о том, что в процессе разработки диаграммы необходимо учесть все сущности, важные с точки зрения контекста данной модели и диаграммы. Отсутствие тех или иных элементов на диаграмме служит признаком неполноты модели и может потребовать ее последующей доработки.
• Все сущности на диаграмме
• Вся информация о сущностях должна быть явно представлена на диаграммах. Речь идет о том, что, хотя в языке UML при отсутствии некоторых символов на диаграмме могут быть использованы их значения по умолчанию (например, в случае неявного указания видимости атрибутов и операций классов), необходимо стремиться к явному указанию свойств всех элементов диаграмм.
• Диаграммы не должны содержать противоречивой информации. Противоречивость модели может служить причиной серьезнейших проблем при ее реализации и последующем использовании на практике. Например, наличие замкнутых путей при изображении отношений агрегирования или композиции приводит к ошибкам в программном коде, который будет реализовывать соответствующие классы. Наличие элементов с одинаковыми именами и различными атрибутами свойств в одном пространстве имен также приводит к неоднозначной интерпретации и может служить источником проблем.
• Диаграммы не следует перегружать текстовой информацией. Принято считать, что визуализация модели является наиболее эффективной, если она содержит минимум пояснительного текста. Как правило, наличие больших фрагментов развернутого текста служит признаком недостаточной проработанности модели или ее неоднородности, когда в рамках одной модели представляется различная по характеру информация. Поскольку общая декомпозиция модели на отдельные типы диаграмм способна удовлетворить самые детальные представления разработчиков о системе, важно уметь правильно отображать те или иные сущности и аспекты моделирования в соответствующие элементы канонических диаграмм.
• Каждая диаграмма должна быть самодостаточной для правильной интерпретации всех ее элементов и понимания семантики всех используемых графических символов. Любые пояснительные тексты, которые не являются собственными элементами диаграммы (например, комментариями), не должны приниматься во внимание разработчиками. В то же время отдельные достаточно общие фрагменты диаграмм могут уточняться или детализироваться на других диаграммах этого же типа, образуя вложенные или подчиненные диаграммы. Таким образом, модель системы на языке UML представляет собой пакет иерархически вложенных диаграмм, детализация которых должна быть достаточной для последующей генерации программного кода, реализующего проект соответствующей системы.
• Количество типов диаграмм для конкретной модели приложения не является строго фиксированным. Речь идет о том, что для простых приложений нет необходимости строить все без исключения типы диаграмм. Некоторые из них могут просто отсутствовать в проекте системы, и этот факт не будет считаться ошибкой разработчика. Например, модель системы может не содержать диаграмму развертывания для приложения, выполняемого локально на компьютере пользователя. Важно понимать, что перечень диаграмм зависит от специфики конкретного проекта системы.
Примечание 32
Наличие в инструментальных CASE-средствах встроенной поддержки визуализации различных диаграмм языка UML позволяет в некоторой степени исключить ошибочное использование тех или иных графических символов, а также контролировать уникальность имен элементов диаграмм. Однако, поскольку вся ответсвенность за окончательный контроль непротиворечивости модели лежит на разработчике, необходимо помнить, что неформальный характер языка UML может служить источником потенциальных ошибок, которые в полном объеме вряд ли будут выявлены инструментальными средствами. Именно это обстоятельство требует от всех разработчиков глубокого знания нотации и семантики всех элементов языка UML.
Любая из моделей системы должна содержать только те элементы, которые определены в нотации языка UML. Имеется в виду требование начинать разработку проекта, используя только те конструкции, которые уже определены в метамодели UML. Как показывает практика, этих конструкций вполне достаточно для представления большинства типовых проектов программных систем. И только в случае отсутствия необходимых базовых элементов языка UML следует использовать механизмы их расширения для адекватного представления конкретной модели системы. При этом не допускается какое бы то ни было переопределение семантики тех элементов, которые отнесены к базовой нотации метамодели языка UML.
Процесс построения отдельных типов диаграмм имеет свои особенности, которые тесно связаны с семантикой элементов этих диаграмм. Сам процесс ООАП в контексте языка UML получил специальное название – рациональный унифицированный процесс (Rational Unified Process, RUP). Концепция RUP и основные его элементы разработаны А. Джекобсоном в ходе его работы над языком UML [18].
Суть концепции RUP заключается в последовательной декомпозиции или разбиении процесса ООАП на отдельные этапы, на каждом из которых осуществляется разработка соответствующих типов канонических диаграмм модели системы. При этом на начальных этапах RUP строятся логические представления статической модели структуры системы, затем – логические представления модели поведения, и лишь после этого – физические представления модели системы. Как нетрудно заметить, в результате RUP должны быть построены канонические диаграммы на языке UML, при этом последовательность их разработки в основном совпадает с их последовательной нумерацией. Таким образом, порядок изложения канонических диаграмм в части II книги не является случайным, а определяется общими рекомендациями рационального унифицированного процесса.
Примечание 33
Как не вспомнить в этой связи известный афоризм, получивший название «бритва Оккама». Суть изречения средневекового ученого-схоласта в достаточно вольном переводе сводится к следующему: «Не плоди рассуждений больше сущности». Другими словами, нужно стремиться дополнительно не усложнять и без того сложные модели систем, а по возможности упрощать их за счет унификации обозначений и семантики базовых элементов.
Примечание 34
При дословном переводе термина RUP теряется некоторая дополнительная семантическая окраска, связанная с двусмысленным толкованием английского Rational. Речь идет о другом варианте перевода – унифицированный процесс от фирмы Rational Software, сотрудниками которой являются с некоторых пор его разработчики, включая упомянутого выше А. Джекобсона.