Сенсационная история Земли
Шрифт:
Но водород – не просто химически активный элемент. Он обладает еще и рядом весьма важных и уникальных свойств, которые определяются его простейшей структурой – атом водорода состоит всего из одного протона в качестве ядра и одного электрона.
Рис. 69. Схема атомов металла и водорода
Прежде всего, растворение водорода в металле оказывается не простым перемешиванием его с атомами металла – водород при этом отдает в общую копилку раствора свой электрон, который у него всего один, и
Но проникая внутрь другого атома, протон как бы увеличивает заряд ядра этого атома, усиливая притяжение к нему электронов и уменьшая таким образом размеры атома. Поэтому растворение водорода в металле, каким бы парадоксальным это ни казалось, может приводить не к рыхлости подобного раствора, а наоборот – к уплотнению исходного металла. При нормальных условиях (то есть при обычном атмосферном давлении и комнатной температуре) этот эффект незначителен, но при высоком давлении и температуре – весьма существенен.
Таким образом, предположение о том, что внешнее жидкое ядро Земли содержит в себе значительное количество водорода, во-первых, не противоречит его химическим свойствам; во-вторых, уже решает проблему глубинного хранилища водорода для рудных месторождений; и в-третьих, что для нас более важно, допускает значительное уплотнение вещества без столь же существенного возрастания в нем давления.
«В московском университете создали баллон на основе... интерметаллида [сплав лантана и никеля]. Поворот крана – и из литрового баллона выделяется тысяча литров водорода!» (М.Курячая, «Гидриды, которых не было»).
Но оказывается, что все это – «семечки»...
В гидридах металлов – то есть в химических соединения металла с водородом – мы имеем другую картину: не водород отдает свой электрон (в общую довольно рыхлую электронную копилку ), а металл избавляется от своей внешней электронной оболочки, образуя так называемую ионную связь с водородом. При этом атом водорода, принимая дополнительный электрон на ту же орбиту, по которой вращается уже имеющийся у него электрон, практически не меняет своего размера. А вот радиус иона атома металла – то есть атома без его внешней электронной оболочки – значительно меньше радиуса самого атома. Для железа и никеля радиус иона составляет примерно 0,6 от радиуса нейтрального атома, а для некоторых других металлов соотношение еще более внушительное. Подобное уменьшение размера ионов металла допускает их уплотнение в гидридной форме в несколько раз без какого-либо повышения давления в качестве следствия такого уплотнения!..
Причем эта способность к гиперуплотнению упаковки частиц гидридов экспериментально обнаруживается даже при обычных нормальных условиях (см. Табл. 1), а при высоких давлениях еще больше увеличивается.
Плотность, г/cм
LiH
NaH
KH
RbH
CsH
CaH 2
SrH 2
BaH 2
Металл
0,534
0,971
0,862
1,532
1,903
1,55
2,60
3,50
Гидрид
0,816
1,396
1,43
2,59
3,42
1,90
3,26
4,21
Уплотнение, %
52,8
43,8
65,8
69,2
80,0
22,6
25,4
22,9
Табл. 1.
Вдобавок, сами гидриды способны еще и растворять в себе дополнительный водород. Эту их способность даже пытались в свое время использовать при разработке водородных автомобильных двигателей для хранения топлива.
«...например, один кубический сантиметр гидрида магния вмещает водорода по весу в полтора раза больше, чем его содержится в кубическом сантиметре жидкого водорода, и в семь раз больше, чем в сжатом до ста пятидесяти атмосфер газе!» (М.Курячая, «Гидриды, которых не было»).
Одна проблема – при нормальных условиях гидриды очень неустойчивы…
Но нам-то и не нужны нормальные условия, поскольку речь идет о возможности их существования глубоко в недрах планеты – там, где давления существенно выше. А при повышении давления устойчивость гидридов существенно увеличивается.
Ныне получено уже экспериментальное подтверждение этих свойств, и все больше геологов постепенно склоняется к тому, что модель гидридного ядра может оказаться куда ближе к реальности, нежели прежняя железо-никелевая модель. Тем более, что уточненные расчеты условий в недрах нашей планеты выявляют неудовлетворительность «чистой» железо-никелиевой модели ее ядра.
«Сейсмологические измерения указывают на то, что и внутреннее (твердое), и внешнее (жидкое) ядра Земли характеризуются меньшей плотностью, по сравнению со значением, получаемым на основе модели ядра, состоящего только из металлического железа при тех же физико-химических параметрах…
Присутствие водорода в ядре долгое время вызывало дискуссию из-за его низкой растворимости в железе при атмосферном давлении. Однако недавние эксперименты [Badding J.V., Mao H.K., Hemley R.J., High-Pressure crystal structure and equation of state of iron hydride: implications for the Earth’s core // High-Pressure Research: Application to Earth and Planetary Sciences / (Syono H., Manghnan M.H. – eds.) TERRAPUB, Tokyo – Am. Geophys. Union. Washington D.C. 1992. P363-371] позволили установить, что гидрид железа FeH может сформироваться при высоких температурах и давлениях и, погружаясь вглубь, оказывается устойчив при давлениях, превышающих 62 ГПа, что соответствует глубинам ~1600 км. В этой связи присутствие значительных количеств (до 40 мол. %) водорода в ядре вполне допустимо и снижает его плотность до значений, согласующихся с данными сейсмологии» (Ю.Пущаровский, «Тектоника и геодинамика мантии Земли»).
Но самое главное заключается в том, что при определенных условиях – например, при уменьшении давления или при нагревании – гидриды способны распадаться на составляющие. Ионы металлов переходят в атомарное состояние со всеми вытекающими отсюда последствиями. Происходит процесс, при котором объем вещества существенно увеличивается без изменения массы, то есть без какого-либо нарушения закона сохранения материи. Аналогичный процесс происходит и при выделении водорода из раствора в металле (см. выше).