Шаг за шагом. Транзисторы
Шрифт:
Разные типы транзисторов плодятся при самом их производстве, причем у каждого основного типа появляется сразу несколько подтипов. Давайте для примера посмотрим, как и почему размножается семейство простейшего сплавного полупроводникового триода со структурой р-n-р.
Сплавной транзистор с такой структурой получается в результате большого числа сложных и тонких технологических операций, некоторые из них названы на рис. 90.
Рис. 90. Производство транзистора — это большой комплекс сложных технологических
При вытягивании кристалла германия в него вводится донорная примесь, и во всем кристалле создается n– проводимость. Затем кристалл разрезают на плоские пластины, которые тщательно шлифуют и в свою очередь разрезают на мелкие кристаллики. Каждый такой кристаллик — основа транзистора, его будущая база, в которую нужно вплавить эмиттер и коллектор.
Для вплавления эмиттера основной кристаллик с проводимостью р– типа помещают в небольшую металлическую кассету (рис. 91) и туда же укладывают заранее приготовленную микроскопическую крупинку индия. Затем кассету закрывают и устанавливают в печь, температура в которой достигает 500 градусов. В этой печи индий вплавляется в кристаллик германия, и в месте вплавления образуется эмиттерный рn– переход.
Рис. 91. Основные этапы производства сплавных и диффузионных транзисторов.
Затем кассету вынимают, переворачивают и с противоположной стороны вводят вторую крупинку индия, несколько большей величины, чем первая. Еще одна установка в печь, еще одно вплавление индия в германий — и еще один, на этот раз коллекторный pn– переход готов. Мы расчленили весь процесс лишь для наглядности: обычно эмиттер и коллектор вплавляют одновременно, при этом в печь устанавливают сразу большое количество кассет.
Весь процесс вплавления описан нами крайне упрощенно. В действительности подготовка к вплавлению включает в себя ряд ювелирных операций, которые производятся под микроскопом. А само вплавление идет при строгом контроле температуры печи и времени пребывания в ней кристаллов с добавками.
Однако как бы точно ни производилась подготовка к вплавлению и как бы строго операторы ни следили за этим процессом, он, по сути дела, протекает «заочно» — никто не может точно сказать, что в тот или иной момент происходит в той или иной кассете, находящейся в печи. Кристаллики основного полупроводника и вплавляемые в них крупинки индия не бывают абсолютно одинаковыми, и в основном поэтому сам ход процесса при образовании рn– переходов в разных кассетах тоже несколько отличается. В итоге в одной и той же группе кассет образуются транзисторы с разными параметрами.
Например, с разным содержанием неосновных носителей в области базы, а значит, с различными обратными токами коллектора (рис. 17) или с разной толщиной базы, поэтому и с разным коэффициентом усиления по току (рис. 35). Кроме того, транзисторы, у которых получилась более толстая база, работают на более низких частотах, так как одно из препятствий для повышения частоты сигнала — это запаздывание зарядов при диффузии их через базу. Заряды просто не поспевают за быстрым изменением высокочастотного сигнала.
После установки кристаллика с двумя рn– переходами в корпус многие параметры получившегося транзистора измеряют и формируют несколько групп приборов со схожими параметрами. Так и появляется вынужденный широкий ассортимент транзисторов, которые, конечно, вполне могли бы быть одним типом, если бы все технологические процессы шли абсолютно одинаково. В частности, такие транзисторы, как П13, П13А, П13Б, П14, П15, П16, П16А, П16Б, получались в результате единого технологического процесса изготовления сплавных рn– переходов только за счет разброса их параметров.
Если трудности полупроводниковой технологии увеличивают число различных типов транзисторов, то совершенствование технологии, применение новых технологических принципов, позволяет уменьшить излишне богатый ассортимент приборов. Так, например, получение рn– переходов методом диффузии позволяет создавать транзисторы, одинаково хорошо работающие и на низких, и на высоких частотах, вплоть до нескольких сот Мгц.
Сущность диффузионной технологии отражена в самом ее названии. Основой транзистора р-n-р здесь, так же как и в сплавной технологии, служит кристаллик германия, но уже с проводимостью р– типа (рис. 91). Сначала этот кристаллик помещают в пары донора, например мышьяка. В результате диффузии донора в кристалл в нем создается тонкий поверхностный слой с проводимостью n– типа. Затем следует еще одна диффузия примеси — кристалл помещают в пары акцептора, например индия. Теперь в тонком слое с проводимостью n– типа создается еще более тонкий слой с р– проводимостью, и кристалл, точнее, его поверхностная область, приобретает структуру р-n-р. В дальнейшем верхний слой (р) будет эмиттером, средний слой (n) — базой, а сам кристалл (р) — коллектором. Остается лишь добраться до внутренних участков этой структуры, то есть подключить выводы к коллектору и базе будущего транзистора.
В самом упрощенном виде эта операция выполняется так: на один из участков кристалла наносят кислотоупорное покрытие, а затем производят травление кристалла в кислоте. В итоге обе «одежды», появившиеся в результате диффузии, исчезают почти со всей поверхности кристалла и нужная структура остается лишь на небольшом участке. Именно к нему и припаивают выводы эмиттера и базы коллектора.
Мы описали лишь один из нескольких способов производства диффузионных транзисторов, причем описали его очень упрощенно. В действительности диффузионная технология, так же, впрочем, как и любая другая технология производства транзисторов, включает в себя большую серию очень тонких и точных технологических операций. Диффузионная технология хотя и сложнее сплавной, но зато позволяет более точно направлять сам ход процесса и получать транзисторные структуры с меньшим разбросом параметров. При этом сами рn– переходы получаются с ровной, плоской границей между зонами и, что особенно важно, получается ровная и очень тонкая, вплоть до нескольких микронов, база. А чем тоньше база, тем большие частоты может усиливать транзистор (рис. 92).
Рис. 92. Чем тоньше база, тем больше предельная частота, на которой может работать транзистор.
Поэтому в основном все высокочастотные транзисторы изготовляют диффузионным способом.
Обратите внимание на расположение выводов у сплавного и диффузионного транзисторов малой мощности (рис. 91). В первом случае сам кристалл становится базой, а во втором случае — коллектором. Кристалл устанавливают на кристаллодержатель, и он оказывается электрически соединенным с корпусом. Поэтому у большинства сплавных транзисторов средний вывод, соединенный с корпусом, — это вывод базы, а у многих диффузионных транзисторов средний вывод — это вывод коллектора. Чтобы не перепутать эмиттер с базой (это может кончиться трагично, если, например, подключить коллекторную батарею между коллектором и эмиттером и оставить «висящую базу»; см. рис. 89), на самом корпусе возле вывода эмиттера ставят желтую или белую точку.